Nanotechnology Innovation Center of Kansas State, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA,
Department of Biomedical Science, Missouri State University, Springfield, MO, USA.
Int J Nanomedicine. 2018 Aug 8;13:4523-4536. doi: 10.2147/IJN.S152222. eCollection 2018.
Biomedical applications of nanoparticles (NPs) as enzyme inhibitors have recently come to light. Oxides of metals native to the physiological environment (eg, Fe, Zn, Mg, etc.) are of particular interest-especially the functional consequences of their enzyme interaction.
Here, FeO, zinc oxide (ZnO), magnesium oxide (MgO) and nickel oxide (NiO) NPs are compared to copper (Cu) and boron carbide (BC) NPs. The functional impact of NP interaction to the model enzyme luciferase is determined by 2-dimensional fluorescence difference spectroscopy (2-D FDS) and 2-dimensional photoluminescence difference spectroscopy (2-D PLDS). By 2-D FDS analysis, the change in maximal intensity and in 2-D FDS area under the curve (AUC) is in the order Cu~BC>ZnO>NiO>>FeO>MgO. The induced changes in protein conformation are confirmed by tryptic digests and gel electrophoresis.
Analysis of possible trypsin cleavage sites suggest that cleavage mostly occurs in the range of residues 112-155 and 372-439, giving a major 45 kDa band. By 2-D PLDS, it is found that BC NPs completely ablate bioluminescence, while Cu and FeO NPs yield a unique bimodal negative decay rate, -7.67×10 and -3.50×10 relative light units respectively. Cu NPs, in particular, give a remarkable 271% change in enzyme activity. Molecular dynamics simulations in water predicted that the surfaces of metal oxide NPs become capped with metal hydroxide groups under physiological conditions, while the surface of BC becomes populated with boronic acid or borinic acid groups. These predictions are supported by the experimentally determined zeta potential. Thin layer chromatography patterns further support this conception of the NP surfaces, where stabilizing interactions were in the order ionic>polar>non-polar for the series tested.
Overall the results suggest that BC and Cu NP functional dynamics on enzyme biochemistry are unique and should be examined further for potential ramifications on other model, physiological or disease-relevant enzymes.
纳米粒子(NPs)作为酶抑制剂在生物医学中的应用最近引起了人们的关注。来源于生理环境的金属氧化物(例如,Fe、Zn、Mg 等)特别有趣——尤其是它们与酶相互作用的功能后果。
在这里,将 FeO、氧化锌(ZnO)、氧化镁(MgO)和氧化镍(NiO)纳米粒子与铜(Cu)和碳化硼(BC)纳米粒子进行比较。通过二维荧光差光谱(2-D FDS)和二维光致发光差光谱(2-D PLDS)来确定 NP 相互作用对模型酶荧光素酶的功能影响。通过 2-D FDS 分析,最大强度和 2-D FDS 曲线下面积(AUC)的变化顺序为 Cu~BC>ZnO>NiO>>FeO>MgO。通过胰蛋白酶消化和凝胶电泳证实了蛋白质构象的变化。
对可能的胰蛋白酶切割位点的分析表明,切割主要发生在残基 112-155 和 372-439 范围内,产生主要的 45 kDa 条带。通过 2-D PLDS 发现,BC 纳米粒子完全消除了生物发光,而 Cu 和 FeO 纳米粒子产生独特的双模态负衰减率,分别为-7.67×10 和-3.50×10 相对光单位。Cu 纳米粒子特别使酶活性发生了显著的 271%变化。水相中的分子动力学模拟预测,在生理条件下,金属氧化物纳米粒子的表面会被金属氢氧化物基团覆盖,而 BC 的表面会被硼酸或硼酸基团占据。这些预测得到了实验确定的 ζ 电位的支持。薄层层析图进一步支持了 NP 表面的这种概念,其中在测试的系列中,稳定相互作用的顺序为离子>极性>非极性。
总的来说,结果表明,BC 和 Cu NP 在酶生物化学中的功能动力学是独特的,应该进一步研究它们对其他模型、生理或疾病相关酶的潜在影响。