Interdepartmental Centre for Food Safety, Technologies and Innovation for Agri-food (SITEIA.PARMA) , Parma 43124 , Italy.
Department of Analytical Chemistry , The Connecticut Agricultural Experiment Station (CAES) , New Haven , Connecticut 06504 , United States.
Environ Sci Technol. 2018 Mar 6;52(5):2451-2467. doi: 10.1021/acs.est.7b04121. Epub 2018 Feb 13.
The increasing use of engineered nanomaterials (ENMs) raises questions regarding their environmental impact. Improving the level of understanding of the genetic and molecular basis of the response to ENM exposure in biota is necessary to accurately assess the true risk to sensitive receptors. The aim of this Review is to compare the plant response to several metal-based ENMs widely used, such as quantum dots, metal oxides, and silver nanoparticles (NPs), integrating available "omics" data (transcriptomics, miRNAs, and proteomics). Although there is evidence that ENMs can release their metal components into the environment, the mechanistic basis of both ENM toxicity and tolerance is often distinct from that of metal ions and bulk materials. We show that the mechanisms of plant defense against ENM stress include the modification of root architecture, involvement of specific phytohormone signaling pathways, and activation of antioxidant mechanisms. A critical meta-analysis allowed us to identify relevant genes, miRNAs, and proteins involved in the response to ENMs and will further allow a mechanistic understanding of plant-ENM interactions.
越来越多的工程纳米材料(ENMs)被使用,这引发了人们对其环境影响的关注。为了准确评估对敏感受体的真实风险,有必要提高对生物体内对 ENM 暴露的遗传和分子基础的反应的理解水平。本综述的目的是比较几种广泛使用的基于金属的 ENMs(如量子点、金属氧化物和银纳米颗粒(NPs))的植物反应,整合可用的“组学”数据(转录组学、miRNA 和蛋白质组学)。尽管有证据表明 ENMs 可以将其金属成分释放到环境中,但 ENM 毒性和耐受性的机制基础通常与金属离子和块状材料的机制基础不同。我们表明,植物防御 ENM 胁迫的机制包括根系结构的修饰、特定植物激素信号通路的参与以及抗氧化机制的激活。一项关键的荟萃分析使我们能够确定参与 ENM 反应的相关基因、miRNA 和蛋白质,并将进一步促进对植物-ENM 相互作用的机制理解。