IEEE Trans Biomed Circuits Syst. 2018 Feb;12(1):161-170. doi: 10.1109/TBCAS.2017.2762002.
This paper presents an IC implementation of on-chip learning neuromorphic autoencoder unit in a form of rate-based spiking neural network. With a current-mode signaling scheme embedded in a 500 × 500 6b SRAM-based memory, the proposed architecture achieves simultaneous processing of multiplications and accumulations. In addition, a transposable memory read for both forward and backward propagations and a virtual lookup table are also proposed to perform an unsupervised learning of restricted Boltzmann machine. The IC is fabricated using 28-nm CMOS process and is verified in a three-layer network of encoder-decoder pair for training and recovery of images with two-dimensional pixels. With a dataset of 50 digits, the IC shows a normalized root mean square error of 0.078. Measured energy efficiencies are 4.46 pJ per synaptic operation for inference and 19.26 pJ per synaptic weight update for learning, respectively. The learning performance is also estimated by simulations if the proposed hardware architecture is extended to apply to a batch training of 60 000 MNIST datasets.
本文提出了一种基于率的尖峰神经网络形式的片上学习神经形态自动编码器单元的 IC 实现。通过在基于 500×500 6b SRAM 的存储器中嵌入电流模式信号方案,该架构实现了乘法和累加的同时处理。此外,还提出了一种可用于前向和后向传播的可转置存储器读取和虚拟查找表,以执行受限玻尔兹曼机的无监督学习。该 IC 采用 28nm CMOS 工艺制造,并在编码器-解码器对的三层网络中进行了验证,用于训练和恢复二维像素的图像。在一个包含 50 个数字的数据集上,该 IC 显示出归一化均方根误差为 0.078。对于推理,每个突触操作的测量能量效率为 4.46pJ,对于学习,每个突触权重更新的测量能量效率为 19.26pJ。如果将所提出的硬件架构扩展应用于 60000 个 MNIST 数据集的批量训练,还可以通过仿真来估计学习性能。