Departamento de Electromagnetismo y Física de la Materia e Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada, Spain.
Dipartimento di Fisica e Scienza della Terra, Università di Parma, 7/A-43124 Parma, Italy.
Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):E1356-E1365. doi: 10.1073/pnas.1712989115. Epub 2018 Jan 29.
Understanding the origin, nature, and functional significance of complex patterns of neural activity, as recorded by diverse electrophysiological and neuroimaging techniques, is a central challenge in neuroscience. Such patterns include collective oscillations emerging out of neural synchronization as well as highly heterogeneous outbursts of activity interspersed by periods of quiescence, called "neuronal avalanches." Much debate has been generated about the possible scale invariance or criticality of such avalanches and its relevance for brain function. Aimed at shedding light onto this, here we analyze the large-scale collective properties of the cortex by using a mesoscopic approach following the principle of parsimony of Landau-Ginzburg. Our model is similar to that of Wilson-Cowan for neural dynamics but crucially, includes stochasticity and space; synaptic plasticity and inhibition are considered as possible regulatory mechanisms. Detailed analyses uncover a phase diagram including down-state, synchronous, asynchronous, and up-state phases and reveal that empirical findings for neuronal avalanches are consistently reproduced by tuning our model to the edge of synchronization. This reveals that the putative criticality of cortical dynamics does not correspond to a quiescent-to-active phase transition as usually assumed in theoretical approaches but to a synchronization phase transition, at which incipient oscillations and scale-free avalanches coexist. Furthermore, our model also accounts for up and down states as they occur (e.g., during deep sleep). This approach constitutes a framework to rationalize the possible collective phases and phase transitions of cortical networks in simple terms, thus helping to shed light on basic aspects of brain functioning from a very broad perspective.
理解通过各种电生理和神经影像学技术记录的复杂神经活动模式的起源、性质和功能意义,是神经科学的一个核心挑战。这些模式包括由神经同步产生的集体振荡,以及由静息期穿插的高度异质活动爆发,称为“神经元雪崩”。关于这种雪崩的可能标度不变性或临界性及其与大脑功能的相关性,已经产生了很多争论。为了阐明这一点,我们在这里使用 Landau-Ginzburg 简约原理遵循介观方法来分析皮层的大规模集体特性。我们的模型类似于 Wilson-Cowan 的神经动力学模型,但关键是,它包括随机性和空间;突触可塑性和抑制被认为是可能的调节机制。详细分析揭示了一个包括下态、同步、异步和上态的相图,并表明通过将我们的模型调谐到同步边缘,可以一致地再现神经元雪崩的经验发现。这表明,皮质动力学的所谓临界性并不对应于理论方法中通常假设的静息到活跃的相变,而是对应于同步相变,在该相变中,初始振荡和无标度雪崩共存。此外,我们的模型还解释了上态和下态的发生(例如,在深度睡眠期间)。这种方法构成了一个框架,可以用简单的术语合理化皮层网络的可能集体相和相变,从而帮助从非常广泛的角度阐明大脑功能的基本方面。