Suppr超能文献

缓慢的渐变源自尖峰神经网络中的自发波动。

Slow ramping emerges from spontaneous fluctuations in spiking neural networks.

机构信息

Institute for Interdisciplinary Brain and Behavioral Sciences, Chapman University, Orange, CA, USA.

Schmid College of Science and Technology, Chapman University, Orange, CA, USA.

出版信息

Nat Commun. 2024 Aug 24;15(1):7285. doi: 10.1038/s41467-024-51401-x.

Abstract

The capacity to initiate actions endogenously is critical for goal-directed behavior. Spontaneous voluntary actions are typically preceded by slow-ramping activity in medial frontal cortex that begins around two seconds before movement, which may reflect spontaneous fluctuations that influence action timing. However, the mechanisms by which these slow ramping signals emerge from single-neuron and network dynamics remain poorly understood. Here, we developed a spiking neural-network model that produces spontaneous slow ramping activity in single neurons and population activity with onsets ~2 s before threshold crossings. A key prediction of our model is that neurons that ramp together have correlated firing patterns before ramping onset. We confirmed this model-derived hypothesis in a dataset of human single neuron recordings from medial frontal cortex. Our results suggest that slow ramping signals reflect bounded spontaneous fluctuations that emerge from quasi-winner-take-all dynamics in clustered networks that are temporally stabilized by slow-acting synapses.

摘要

自主发起行动的能力对于目标导向行为至关重要。自发的自愿行动通常在前导运动约两秒前,由中前额皮层中的缓慢斜坡活动预先出现,这可能反映了影响动作定时的自发波动。然而,这些缓慢斜坡信号如何从单个神经元和网络动力学中出现的机制仍知之甚少。在这里,我们开发了一个尖峰神经网络模型,该模型可在单个神经元和群体活动中产生自发的缓慢斜坡活动,其起始时间约为阈值交叉前 2 秒。我们模型的一个关键预测是,在斜坡起始之前,一起斜坡的神经元具有相关的发射模式。我们在来自中前额皮层的人类单个神经元记录的数据集验证了这个基于模型的假设。我们的结果表明,缓慢斜坡信号反映了受约束的自发波动,这些波动是由聚类网络中的准胜者通吃动力学产生的,而缓慢作用的突触则使这些波动在时间上得到稳定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d5/11344096/2c963df74a19/41467_2024_51401_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验