Suppr超能文献

具有多种神经元亚型和突触噪声的随机网络中的自发活动动态:存在突触噪声的网络中的自发活动

Dynamics of spontaneous activity in random networks with multiple neuron subtypes and synaptic noise : Spontaneous activity in networks with synaptic noise.

作者信息

Pena Rodrigo F O, Zaks Michael A, Roque Antonio C

机构信息

Department of Physics, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.

Department of Physics, Faculty of Mathematics and Natural Sciences, Humboldt University of Berlin, Berlin, Germany.

出版信息

J Comput Neurosci. 2018 Aug;45(1):1-28. doi: 10.1007/s10827-018-0688-6. Epub 2018 Jun 19.

Abstract

Spontaneous cortical population activity exhibits a multitude of oscillatory patterns, which often display synchrony during slow-wave sleep or under certain anesthetics and stay asynchronous during quiet wakefulness. The mechanisms behind these cortical states and transitions among them are not completely understood. Here we study spontaneous population activity patterns in random networks of spiking neurons of mixed types modeled by Izhikevich equations. Neurons are coupled by conductance-based synapses subject to synaptic noise. We localize the population activity patterns on the parameter diagram spanned by the relative inhibitory synaptic strength and the magnitude of synaptic noise. In absence of noise, networks display transient activity patterns, either oscillatory or at constant level. The effect of noise is to turn transient patterns into persistent ones: for weak noise, all activity patterns are asynchronous non-oscillatory independently of synaptic strengths; for stronger noise, patterns have oscillatory and synchrony characteristics that depend on the relative inhibitory synaptic strength. In the region of parameter space where inhibitory synaptic strength exceeds the excitatory synaptic strength and for moderate noise magnitudes networks feature intermittent switches between oscillatory and quiescent states with characteristics similar to those of synchronous and asynchronous cortical states, respectively. We explain these oscillatory and quiescent patterns by combining a phenomenological global description of the network state with local descriptions of individual neurons in their partial phase spaces. Our results point to a bridge from events at the molecular scale of synapses to the cellular scale of individual neurons to the collective scale of neuronal populations.

摘要

自发的皮层群体活动呈现出多种振荡模式,这些模式在慢波睡眠期间或在某些麻醉状态下常常表现出同步性,而在安静觉醒状态下则保持异步。这些皮层状态及其之间转换的背后机制尚未完全理解。在这里,我们研究由Izhikevich方程建模的混合类型的脉冲神经元随机网络中的自发群体活动模式。神经元通过基于电导的突触耦合,并受到突触噪声的影响。我们将群体活动模式定位在由相对抑制性突触强度和突触噪声幅度所跨越的参数图上。在没有噪声的情况下,网络呈现出瞬态活动模式,要么是振荡的,要么是恒定水平的。噪声的作用是将瞬态模式转变为持久模式:对于弱噪声,所有活动模式都是异步非振荡的,与突触强度无关;对于较强噪声,模式具有振荡和同步特性,这取决于相对抑制性突触强度。在参数空间中抑制性突触强度超过兴奋性突触强度的区域,对于中等噪声幅度,网络具有振荡和静止状态之间的间歇性切换,其特征分别类似于同步和异步皮层状态。我们通过将网络状态的唯象全局描述与单个神经元在其部分相空间中的局部描述相结合来解释这些振荡和静止模式。我们的结果指出了从突触分子尺度的事件到单个神经元细胞尺度再到神经元群体集体尺度的一座桥梁。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00a8/6061197/9809a3897da0/10827_2018_688_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验