Zhang Yuan-Hang, Sipling Chesson, Qiu Erbin, Schuller Ivan K, Di Ventra Massimiliano
Department of Physics, University of California San Diego, La Jolla, CA, 92093, USA.
Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA.
Nat Commun. 2024 Aug 14;15(1):6986. doi: 10.1038/s41467-024-51254-4.
In the pursuit of scalable and energy-efficient neuromorphic devices, recent research has unveiled a novel category of spiking oscillators, termed "thermal neuristors." These devices function via thermal interactions among neighboring vanadium dioxide resistive memories, emulating biological neuronal behavior. Here, we show that the collective dynamical behavior of networks of these neurons showcases a rich phase structure, tunable by adjusting the thermal coupling and input voltage. Notably, we identify phases exhibiting long-range order that, however, does not arise from criticality, but rather from the time non-local response of the system. In addition, we show that these thermal neuristor arrays achieve high accuracy in image recognition and time series prediction through reservoir computing, without leveraging long-range order. Our findings highlight a crucial aspect of neuromorphic computing with possible implications on the functioning of the brain: criticality may not be necessary for the efficient performance of neuromorphic systems in certain computational tasks.
在追求可扩展且节能的神经形态器件过程中,近期研究揭示了一种新型的尖峰振荡器,称为“热神经元晶体管”。这些器件通过相邻二氧化钒电阻式存储器之间的热相互作用发挥作用,模拟生物神经元行为。在此,我们表明这些神经元网络的集体动力学行为展现出丰富的相结构,可通过调节热耦合和输入电压来调谐。值得注意的是,我们识别出呈现长程有序的相,然而,这种长程有序并非源于临界性,而是源于系统的时间非局部响应。此外,我们表明这些热神经元晶体管阵列通过储层计算在图像识别和时间序列预测中实现了高精度,而无需利用长程有序。我们的发现突出了神经形态计算的一个关键方面,可能对大脑功能产生影响:在某些计算任务中,临界性对于神经形态系统的高效性能可能并非必要。