Suppr超能文献

基于定量 CT 图像分析预测胰腺导管腺癌患者的生存情况。

Survival Prediction in Pancreatic Ductal Adenocarcinoma by Quantitative Computed Tomography Image Analysis.

机构信息

Department of Surgery - Hepatopancreatobiliary Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

出版信息

Ann Surg Oncol. 2018 Apr;25(4):1034-1042. doi: 10.1245/s10434-017-6323-3. Epub 2018 Jan 29.

Abstract

BACKGROUND

Pancreatic cancer is a highly lethal cancer with no established a priori markers of survival. Existing nomograms rely mainly on post-resection data and are of limited utility in directing surgical management. This study investigated the use of quantitative computed tomography (CT) features to preoperatively assess survival for pancreatic ductal adenocarcinoma (PDAC) patients.

METHODS

A prospectively maintained database identified consecutive chemotherapy-naive patients with CT angiography and resected PDAC between 2009 and 2012. Variation in CT enhancement patterns was extracted from the tumor region using texture analysis, a quantitative image analysis tool previously described in the literature. Two continuous survival models were constructed, with 70% of the data (training set) using Cox regression, first based only on preoperative serum cancer antigen (CA) 19-9 levels and image features (model A), and then on CA19-9, image features, and the Brennan score (composite pathology score; model B). The remaining 30% of the data (test set) were reserved for independent validation.

RESULTS

A total of 161 patients were included in the analysis. Training and test sets contained 113 and 48 patients, respectively. Quantitative image features combined with CA19-9 achieved a c-index of 0.69 [integrated Brier score (IBS) 0.224] on the test data, while combining CA19-9, imaging, and the Brennan score achieved a c-index of 0.74 (IBS 0.200) on the test data.

CONCLUSION

We present two continuous survival prediction models for resected PDAC patients. Quantitative analysis of CT texture features is associated with overall survival. Further work includes applying the model to an external dataset to increase the sample size for training and to determine its applicability.

摘要

背景

胰腺癌是一种高度致命的癌症,目前尚无明确的生存预后标志物。现有的列线图主要依赖于术后数据,对指导手术管理的实用性有限。本研究旨在探讨使用定量 CT(computed tomography)特征来术前评估胰腺导管腺癌(pancreatic ductal adenocarcinoma,PDAC)患者的生存情况。

方法

从 2009 年至 2012 年连续前瞻性维护数据库中确定接受 CT 血管造影检查和胰腺切除术的化疗初治 PDAC 患者。使用纹理分析(一种已在文献中描述的定量图像分析工具)从肿瘤区域提取 CT 增强模式的变化。构建了两种连续生存模型,其中 70%的数据(训练集)使用 Cox 回归,首先仅基于术前血清肿瘤标志物 CA19-9 水平和图像特征(模型 A),然后基于 CA19-9、图像特征和 Brennan 评分(复合病理评分;模型 B)。其余 30%的数据(测试集)保留用于独立验证。

结果

共纳入 161 例患者进行分析。训练集和测试集分别包含 113 例和 48 例患者。在测试数据中,定量图像特征与 CA19-9 相结合的模型的 c 指数为 0.69(综合 Brier 评分(integrated Brier score,IBS)为 0.224),而结合 CA19-9、成像和 Brennan 评分的模型的 c 指数为 0.74(IBS 为 0.200)。

结论

我们提出了两种用于接受胰腺切除术的 PDAC 患者的连续生存预测模型。CT 纹理特征的定量分析与总生存相关。进一步的工作包括将模型应用于外部数据集,以增加训练样本量并确定其适用性。

相似文献

1
Survival Prediction in Pancreatic Ductal Adenocarcinoma by Quantitative Computed Tomography Image Analysis.
Ann Surg Oncol. 2018 Apr;25(4):1034-1042. doi: 10.1245/s10434-017-6323-3. Epub 2018 Jan 29.
3
CT Radiomics-Based Preoperative Survival Prediction in Patients With Pancreatic Ductal Adenocarcinoma.
AJR Am J Roentgenol. 2021 Nov;217(5):1104-1112. doi: 10.2214/AJR.20.23490. Epub 2021 Sep 1.
4
Preoperative risk prediction for intraductal papillary mucinous neoplasms by quantitative CT image analysis.
HPB (Oxford). 2019 Feb;21(2):212-218. doi: 10.1016/j.hpb.2018.07.016. Epub 2018 Aug 7.
9
Tumor-Infiltrating NETs Predict Postsurgical Survival in Patients with Pancreatic Ductal Adenocarcinoma.
Ann Surg Oncol. 2019 Feb;26(2):635-643. doi: 10.1245/s10434-018-6941-4. Epub 2018 Oct 29.
10

引用本文的文献

1
Advancements in Radiomics-Based AI for Pancreatic Ductal Adenocarcinoma.
Bioengineering (Basel). 2025 Aug 6;12(8):849. doi: 10.3390/bioengineering12080849.
2
Preoperative Prognostic Factors in Resectable Pancreatic Cancer: State of the Art and Prospects.
Ann Surg Oncol. 2025 Jun;32(6):4117-4127. doi: 10.1245/s10434-025-17062-w. Epub 2025 Mar 17.
4
Understanding the Conundrum of Pancreatic Cancer in the Omics Sciences Era.
Int J Mol Sci. 2024 Jul 11;25(14):7623. doi: 10.3390/ijms25147623.

本文引用的文献

2
Pancreas Segmentation in MRI using Graph-Based Decision Fusion on Convolutional Neural Networks.
Med Image Comput Comput Assist Interv. 2016 Oct;9901:442-450. doi: 10.1007/978-3-319-46723-8_51. Epub 2016 Oct 2.
4
A Bottom-Up Approach for Pancreas Segmentation Using Cascaded Superpixels and (Deep) Image Patch Labeling.
IEEE Trans Image Process. 2017 Jan;26(1):386-399. doi: 10.1109/TIP.2016.2624198. Epub 2016 Nov 1.
6
Systemic Inflammatory Response and Elevated Tumour Markers Predict Worse Survival in Resectable Pancreatic Ductal Adenocarcinoma.
PLoS One. 2016 Sep 15;11(9):e0163064. doi: 10.1371/journal.pone.0163064. eCollection 2016.
10
Intratumoral heterogeneity of (18)F-FDG uptake predicts survival in patients with pancreatic ductal adenocarcinoma.
Eur J Nucl Med Mol Imaging. 2016 Jul;43(8):1461-8. doi: 10.1007/s00259-016-3316-6. Epub 2016 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验