Suppr超能文献

利用胰腺癌患者放疗前后的18F-FDG PET图像识别预后性肿瘤内异质性。

Identifying prognostic intratumor heterogeneity using pre- and post-radiotherapy 18F-FDG PET images for pancreatic cancer patients.

作者信息

Yue Yong, Osipov Arsen, Fraass Benedick, Sandler Howard, Zhang Xiao, Nissen Nicholas, Hendifar Andrew, Tuli Richard

机构信息

Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

出版信息

J Gastrointest Oncol. 2017 Feb;8(1):127-138. doi: 10.21037/jgo.2016.12.04.

Abstract

BACKGROUND

To stratify risks of pancreatic adenocarcinoma (PA) patients using pre- and post-radiotherapy (RT) PET/CT images, and to assess the prognostic value of texture variations in predicting therapy response of patients.

METHODS

Twenty-six PA patients treated with RT from 2011-2013 with pre- and post-treatment 18F-FDG-PET/CT scans were identified. Tumor locoregional texture was calculated using 3D kernel-based approach, and texture variations were identified by fitting discrepancies of texture maps of pre- and post-treatment images. A total of 48 texture and clinical variables were identified and evaluated for association with overall survival (OS). The prognostic heterogeneity features were selected using lasso/elastic net regression, and further were evaluated by multivariate Cox analysis.

RESULTS

Median age was 69 y (range, 46-86 y). The texture map and temporal variations between pre- and post-treatment were well characterized by histograms and statistical fitting. The lasso analysis identified seven predictors (age, node stage, post-RT SUVmax, variations of homogeneity, variance, sum mean, and cluster tendency). The multivariate Cox analysis identified five significant variables: age, node stage, variations of homogeneity, variance, and cluster tendency (with P=0.020, 0.040, 0.065, 0.078, and 0.081, respectively). The patients were stratified into two groups based on the risk score of multivariate analysis with log-rank P=0.001: a low risk group (n=11) with a longer mean OS (29.3 months) and higher texture variation (>30%), and a high risk group (n=15) with a shorter mean OS (17.7 months) and lower texture variation (<15%).

CONCLUSIONS

Locoregional metabolic texture response provides a feasible approach for evaluating and predicting clinical outcomes following treatment of PA with RT. The proposed method can be used to stratify patient risk and help select appropriate treatment strategies for individual patients toward implementing response-driven adaptive RT.

摘要

背景

利用放疗前后的PET/CT图像对胰腺腺癌(PA)患者的风险进行分层,并评估纹理变化在预测患者治疗反应中的预后价值。

方法

确定了2011年至2013年接受放疗且治疗前后均进行18F-FDG-PET/CT扫描的26例PA患者。使用基于3D核的方法计算肿瘤局部纹理,并通过拟合治疗前后图像纹理图的差异来识别纹理变化。共识别并评估了48个纹理和临床变量与总生存期(OS)的相关性。使用套索/弹性网络回归选择预后异质性特征,并通过多变量Cox分析进一步评估。

结果

中位年龄为69岁(范围46-86岁)。治疗前后的纹理图和时间变化通过直方图和统计拟合得到了很好的表征。套索分析确定了七个预测因子(年龄、淋巴结分期、放疗后SUVmax、均匀性变化、方差、总和均值以及聚类倾向)。多变量Cox分析确定了五个显著变量:年龄、淋巴结分期、均匀性变化、方差和聚类倾向(P值分别为0.020、0.040、0.065、0.078和0.081)。根据多变量分析的风险评分将患者分为两组,对数秩检验P=0.001:低风险组(n=11),平均OS较长(29.3个月)且纹理变化较高(>30%);高风险组(n=15),平均OS较短(17.7个月)且纹理变化较低(<15%)。

结论

局部代谢纹理反应为评估和预测PA放疗后的临床结果提供了一种可行的方法。所提出的方法可用于对患者风险进行分层,并有助于为个体患者选择合适的治疗策略,以实施反应驱动的自适应放疗。

相似文献

2
Stratifying triple-negative breast cancer prognosis using 18F-FDG-PET/CT imaging.
Breast Cancer Res Treat. 2015 Oct;153(3):607-16. doi: 10.1007/s10549-015-3558-1. Epub 2015 Sep 7.
3
Interchangeability of radiomic features between [18F]-FDG PET/CT and [18F]-FDG PET/MR.
Med Phys. 2019 Apr;46(4):1677-1685. doi: 10.1002/mp.13422. Epub 2019 Feb 22.
6
FDG PET/CT radiomics for predicting the outcome of locally advanced rectal cancer.
Eur J Nucl Med Mol Imaging. 2018 Mar;45(3):365-375. doi: 10.1007/s00259-017-3855-5. Epub 2017 Oct 18.

引用本文的文献

1
Advancements in Radiomics-Based AI for Pancreatic Ductal Adenocarcinoma.
Bioengineering (Basel). 2025 Aug 6;12(8):849. doi: 10.3390/bioengineering12080849.
5
Comprehensive multimodal management of borderline resectable pancreatic cancer: Current status and progress.
World J Gastrointest Surg. 2023 Feb 27;15(2):142-162. doi: 10.4240/wjgs.v15.i2.142.
6
Artificial Intelligence Applied to Pancreatic Imaging: A Narrative Review.
Healthcare (Basel). 2022 Aug 11;10(8):1511. doi: 10.3390/healthcare10081511.
7
Application of artificial intelligence to pancreatic adenocarcinoma.
Front Oncol. 2022 Jul 22;12:960056. doi: 10.3389/fonc.2022.960056. eCollection 2022.
8
A systematic review of prognosis predictive role of radiomics in pancreatic cancer: heterogeneity markers or statistical tricks?
Eur Radiol. 2022 Dec;32(12):8443-8452. doi: 10.1007/s00330-022-08922-0. Epub 2022 Jul 29.
10
Potential advantages of FDG-PET radiomic feature map for target volume delineation in lung cancer radiotherapy.
J Appl Clin Med Phys. 2022 Sep;23(9):e13696. doi: 10.1002/acm2.13696. Epub 2022 Jun 14.

本文引用的文献

2
Prognostic value and reproducibility of pretreatment CT texture features in stage III non-small cell lung cancer.
Int J Radiat Oncol Biol Phys. 2014 Nov 15;90(4):834-42. doi: 10.1016/j.ijrobp.2014.07.020. Epub 2014 Sep 11.
3
Texture analysis on (18)F-FDG PET/CT images to differentiate malignant and benign bone and soft-tissue lesions.
Ann Nucl Med. 2014 Nov;28(9):926-35. doi: 10.1007/s12149-014-0895-9. Epub 2014 Aug 9.
5
Usefulness of F-18-fluorodeoxyglucose positron emission tomography to confirm suspected pancreatic cancer: a meta-analysis.
Eur J Surg Oncol. 2014 Jul;40(7):794-804. doi: 10.1016/j.ejso.2014.03.016. Epub 2014 Apr 3.
6
Management options in locally advanced pancreatic cancer.
Curr Oncol Rep. 2014 Jun;16(6):388. doi: 10.1007/s11912-014-0388-y.
7
Cancer statistics, 2014.
CA Cancer J Clin. 2014 Jan-Feb;64(1):9-29. doi: 10.3322/caac.21208. Epub 2014 Jan 7.
9
FDG-PET in diagnosis, staging and prognosis of pancreatic carcinoma: a meta-analysis.
World J Gastroenterol. 2013 Aug 7;19(29):4808-17. doi: 10.3748/wjg.v19.i29.4808.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验