Suppr超能文献

层状表面合成石墨烯纳米带异质结。

Hierarchical On-Surface Synthesis of Graphene Nanoribbon Heterojunctions.

机构信息

Department of Physics , University of California , Berkeley , California 94720 , United States.

Department of Chemistry , University of California , Berkeley , California 94720 , United States.

出版信息

ACS Nano. 2018 Mar 27;12(3):2193-2200. doi: 10.1021/acsnano.7b08658. Epub 2018 Feb 6.

Abstract

Bottom-up graphene nanoribbon (GNR) heterojunctions are nanoscale strips of graphene whose electronic structure abruptly changes across a covalently bonded interface. Their rational design offers opportunities for profound technological advancements enabled by their extraordinary structural and electronic properties. Thus far, the most critical aspect of their synthesis, the control over sequence and position of heterojunctions along the length of a ribbon, has been plagued by randomness in monomer sequences emerging from step-growth copolymerization of distinct monomers. All bottom-up GNR heterojunction structures created so far have exhibited random sequences of heterojunctions and, while useful for fundamental scientific studies, are difficult to incorporate into functional nanodevices as a result. In contrast, we describe a hierarchical fabrication strategy that allows the growth of bottom-up GNRs that preferentially exhibit a single heterojunction interface rather than a random statistical sequence of junctions along the ribbon. Such heterojunctions provide a viable platform that could be directly used in functional GNR-based device applications at the molecular scale. Our hierarchical GNR fabrication strategy is based on differences in the dissociation energies of C-Br and C-I bonds that allow control over the growth sequence of the block copolymers from which GNRs are formed and consequently yields a significantly higher proportion of single-junction GNR heterostructures. Scanning tunneling spectroscopy and density functional theory calculations confirm that hierarchically grown heterojunctions between chevron GNR (cGNR) and binaphthyl-cGNR segments exhibit straddling Type I band alignment in structures that are only one atomic layer thick and 3 nm in width.

摘要

底部向上的石墨烯纳米带(GNR)异质结是石墨烯的纳米级条带,其电子结构在共价键界面处急剧变化。它们的合理设计为通过其非凡的结构和电子特性实现的深刻技术进步提供了机会。到目前为止,它们合成中最关键的方面,即在带状物长度上对异质结的顺序和位置的控制,一直受到来自不同单体的逐步共聚单体序列随机性的困扰。迄今为止,所有创建的底部向上的 GNR 异质结结构都表现出异质结的随机序列,虽然对基础科学研究很有用,但由于难以将其纳入功能纳米器件中,因此具有很大的局限性。相比之下,我们描述了一种分层制造策略,该策略允许生长底部向上的 GNR,这些 GNR 优先表现出单个异质结界面,而不是沿着带状物的随机统计结序列。这样的异质结提供了一个可行的平台,可以直接用于基于 GNR 的功能器件在分子尺度上的应用。我们的分层 GNR 制造策略基于 C-Br 和 C-I 键的离解能的差异,这允许控制形成 GNR 的嵌段共聚物的生长顺序,从而产生更高比例的单结 GNR 异质结构。扫描隧道光谱和密度泛函理论计算证实,在 chevron GNR(cGNR)和联萘-cGNR 段之间的分层生长异质结中,在仅一个原子层厚且 3nm 宽的结构中表现出跨越 I 型能带排列。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验