National Synchrotron Radiation Laboratory, University of Science and Technology of China , Hefei 230029, Anhui, P. R. China.
ACS Appl Mater Interfaces. 2018 Feb 21;10(7):6228-6234. doi: 10.1021/acsami.7b15674. Epub 2018 Feb 12.
Highly efficient oxygen evolution driven by abundant sunlight is a key to realize overall water splitting for large-scale conversion of renewable energy. Here, we report a strategy for the interfacial atomic and electronic coupling of layered CoOOH and BiVO to deactivate the surface trapping states and suppress the charge-carrier recombination for high photoelectrochemical (PEC) water oxidation activity. The successful synthesis of a 3D ultrathin-CoOOH-overlayer-coated coral-like BiVO photoanode effectively tailors the migration route of photocarriers on the semiconductor/liquid interface to realize a great increase of ∼200% in the photovoltage relative to bare BiVO, consequently decreasing the corresponding onset potential of PEC water splitting from 0.60 to 0.20 V. As a result, the unique CoOOH/BiVO photoanode could efficiently perform PEC water oxidation in a neutral aqueous solution (pH = 7) with a high photocurrent density of 4.0 mA/cm at 1.23 V and a prominent quantum efficiency of 65% at 450 nm. Electronic structural characterizations and theoretical calculations reveal that the combination of layered CoOOH and BiVO forming interfacial oxo-bridge bonding could greatly eliminate surface trapping states and promote the direct transfer of photogenerated holes from the valence band to the surface water redox potential for water oxidation.
丰富的太阳光驱动的高效氧气析出是实现大规模可再生能源转化全水解的关键。在此,我们报告了一种将层状 CoOOH 和 BiVO 界面原子和电子耦合的策略,以钝化表面捕获态并抑制载流子复合,从而提高光电化学(PEC)水氧化活性。成功合成了一种 3D 超薄-CoOOH 覆盖层涂覆的珊瑚状 BiVO 光阳极,有效地调整了半导体/液体界面上光载流子的迁移路径,使光电压相对于裸 BiVO 增加了约 200%,从而使相应的 PEC 水分解起始电位从 0.60 V 降低到 0.20 V。结果,独特的 CoOOH/BiVO 光阳极能够在中性水溶液(pH = 7)中高效进行 PEC 水氧化,在 1.23 V 时的光电流密度为 4.0 mA/cm,在 450nm 时的量子效率为 65%。电子结构特性和理论计算表明,层状 CoOOH 和 BiVO 形成界面氧桥键合,可以极大地消除表面捕获态,并促进光生空穴从价带直接转移到表面水氧化还原电位以进行水氧化。