Goetz Katelyn P, Tsutsumi Jun'ya, Pookpanratana Sujitra, Chen Jihua, Corbin Nathan S, Behera Rakesh K, Coropceanu Veaceslav, Richter Curt A, Hacker Christina A, Hasegawa Tatsuo, Jurchescu Oana D
Department of Physics, Wake Forest University, Winston Salem, NC 27109, USA.
Flexible Electronics Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8562, Japan.
Adv Electron Mater. 2016 Oct;2(10). doi: 10.1002/aelm.201600203. Epub 2016 Sep 14.
The organic charge-transfer (CT) complex dibenzotetrathiafulvalene - 7,7,8,8-tetracyanoquinodimethane (DBTTF-TCNQ) is found to crystallize in two polymorphs when grown by physical vapor transport: the known α-polymorph and a new structure, the β-polymorph. Structural and elemental analysis via selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), and polarized IR spectroscopy reveal that the complexes have the same stoichiometry with a 1:1 donor:acceptor ratio, but exhibit unique unit cells. The structural variations result in significant differences in the optoelectronic properties of the crystals, as observed in our experiments and electronic-structure calculations. Raman spectroscopy shows that the α-polymorph has a degree of charge transfer of about 0.5, while the β-polymorph is nearly neutral. Organic field-effect transistors fabricated on these crystals reveal that in the same device structure both polymorphs show ambipolar charge transport, but the α-polymorph exhibits electron-dominant transport while the β-polymorph is hole-dominant. Together, these measurements imply that the transport features result from differing donor-acceptor overlap and consequential varying in frontier molecular orbital mixing, as suggested theoretically for charge-transfer complexes.
有机电荷转移(CT)复合物二苯并四硫富瓦烯-7,7,8,8-四氰基对苯二醌二甲烷(DBTTF-TCNQ)通过物理气相传输生长时会结晶为两种多晶型物:已知的α-多晶型物和一种新结构β-多晶型物。通过选区电子衍射(SAED)、X射线光电子能谱(XPS)和偏振红外光谱进行的结构和元素分析表明,这些复合物具有相同的化学计量比,供体与受体比例为1:1,但呈现出独特的晶胞。如我们的实验和电子结构计算所观察到的,结构变化导致晶体的光电性能存在显著差异。拉曼光谱表明,α-多晶型物的电荷转移程度约为0.5,而β-多晶型物几乎呈中性。在这些晶体上制备的有机场效应晶体管表明,在相同的器件结构中,两种多晶型物均显示双极性电荷传输,但α-多晶型物表现为电子主导传输,而β-多晶型物则为空穴主导传输。总之,这些测量结果表明,传输特性源于供体-受体重叠的差异以及前沿分子轨道混合的相应变化,这正如电荷转移复合物的理论推测。