Suppr超能文献

纵向建模:对具有治愈比例的竞争风险数据进行分析

Vertical modeling: analysis of competing risks data with a cure fraction.

作者信息

Nicolaie Mioara Alina, Taylor Jeremy M G, Legrand Catherine

机构信息

Institute of Statistics, Biostatistics and Actuarial Sciences, Catholic University of Louvain, Voie du Roman Pays 20, bte L1.04.01, 1348, Louvain-la-Neuve, Belgium.

School of Public Health, University of Michigan, M4509 SPH II, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA.

出版信息

Lifetime Data Anal. 2019 Jan;25(1):1-25. doi: 10.1007/s10985-018-9417-8. Epub 2018 Jan 31.

Abstract

In this paper, we extend the vertical modeling approach for the analysis of survival data with competing risks to incorporate a cure fraction in the population, that is, a proportion of the population for which none of the competing events can occur. The proposed method has three components: the proportion of cure, the risk of failure, irrespective of the cause, and the relative risk of a certain cause of failure, given a failure occurred. Covariates may affect each of these components. An appealing aspect of the method is that it is a natural extension to competing risks of the semi-parametric mixture cure model in ordinary survival analysis; thus, causes of failure are assigned only if a failure occurs. This contrasts with the existing mixture cure model for competing risks of Larson and Dinse, which conditions at the onset on the future status presumably attained. Regression parameter estimates are obtained using an EM-algorithm. The performance of the estimators is evaluated in a simulation study. The method is illustrated using a melanoma cancer data set.

摘要

在本文中,我们扩展了用于分析具有竞争风险的生存数据的纵向建模方法,以纳入人群中的治愈比例,即竞争事件均不会发生的人群比例。所提出的方法有三个组成部分:治愈比例、无论病因如何的失败风险,以及给定发生失败的情况下某一特定失败原因的相对风险。协变量可能会影响这些组成部分中的每一个。该方法的一个吸引人之处在于,它是普通生存分析中半参数混合治愈模型对竞争风险的自然扩展;因此,只有在发生失败时才指定失败原因。这与现有的Larson和Dinse的竞争风险混合治愈模型形成对比,后者在开始时就假定未来状态的条件。使用期望最大化(EM)算法获得回归参数估计值。在模拟研究中评估估计量的性能。使用黑色素瘤癌症数据集对该方法进行了说明。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验