Suppr超能文献

具有区间删失数据的灵活参数混合治愈模型中的变量选择

Variable selection in a flexible parametric mixture cure model with interval-censored data.

作者信息

Scolas Sylvie, El Ghouch Anouar, Legrand Catherine, Oulhaj Abderrahim

机构信息

Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA), Université catholique de Louvain, Louvain-la-Neuve, Belgium.

Institute of public health, College of Medicine & Health Sciences, United Arab Emirates University (UAEU), United Arab Emirates (UAE).

出版信息

Stat Med. 2016 Mar 30;35(7):1210-25. doi: 10.1002/sim.6767. Epub 2015 Oct 15.

Abstract

In standard survival analysis, it is generally assumed that every individual will experience someday the event of interest. However, this is not always the case, as some individuals may not be susceptible to this event. Also, in medical studies, it is frequent that patients come to scheduled interviews and that the time to the event is only known to occur between two visits. That is, the data are interval-censored with a cure fraction. Variable selection in such a setting is of outstanding interest. Covariates impacting the survival are not necessarily the same as those impacting the probability to experience the event. The objective of this paper is to develop a parametric but flexible statistical model to analyze data that are interval-censored and include a fraction of cured individuals when the number of potential covariates may be large. We use the parametric mixture cure model with an accelerated failure time regression model for the survival, along with the extended generalized gamma for the error term. To overcome the issue of non-stable and non-continuous variable selection procedures, we extend the adaptive LASSO to our model. By means of simulation studies, we show good performance of our method and discuss the behavior of estimates with varying cure and censoring proportion. Lastly, our proposed method is illustrated with a real dataset studying the time until conversion to mild cognitive impairment, a possible precursor of Alzheimer's disease.

摘要

在标准生存分析中,通常假定每个个体终有一天会经历感兴趣的事件。然而,实际情况并非总是如此,因为有些个体可能不易发生该事件。此外,在医学研究中,患者按时前来接受访谈的情况很常见,而且事件发生的时间仅知道在两次访视之间。也就是说,数据是带有治愈比例的区间删失数据。在这种情况下的变量选择非常重要。影响生存的协变量不一定与影响经历该事件概率的协变量相同。本文的目的是开发一种参数化但灵活的统计模型,用于分析区间删失且在潜在协变量数量可能很大时包含一部分治愈个体的数据。我们使用参数化混合治愈模型,其中生存部分采用加速失效时间回归模型,误差项采用扩展广义伽马分布。为了克服变量选择过程不稳定和不连续的问题,我们将自适应LASSO扩展到我们的模型。通过模拟研究,我们展示了我们方法的良好性能,并讨论了不同治愈和删失比例下估计量的行为。最后,我们用一个研究转化为轻度认知障碍(阿尔茨海默病的一种可能前驱症状)所需时间的真实数据集说明了我们提出的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e325/5057324/6f5031b3b467/SIM-35-1210-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验