Koutras M V, Milienos F S
Department of Statistics and Insurance Science, University of Piraeus, 80, Karaoli and Dimitriou Street, 18534, Piraeus, Greece.
Stat Med. 2017 Jul 20;36(16):2559-2575. doi: 10.1002/sim.7293. Epub 2017 Apr 17.
In this paper, we introduce a flexible family of cure rate models, mainly motivated by the biological derivation of the classical promotion time cure rate model and assuming that a metastasis-competent tumor cell produces a detectable-tumor mass only when a specific number of distinct biological factors affect the cell. Special cases of the new model are, among others, the promotion time (proportional hazards), the geometric (proportional odds), and the negative binomial cure rate model. In addition, our model generalizes specific families of transformation cure rate models and some well-studied destructive cure rate models. Exact likelihood inference is carried out by the aid of the expectationŰmaximization algorithm; a profile likelihood approach is exploited for estimating the parameters of the model while model discrimination problem is analyzed by the aid of the likelihood ratio test. A simulation study demonstrates the accuracy of the proposed inferential method. Finally, as an illustration, we fit the proposed model to a cutaneous melanoma data-set. Copyright © 2017 John Wiley & Sons, Ltd.
在本文中,我们引入了一类灵活的治愈率模型族,其主要动机源于经典促进时间治愈率模型的生物学推导,并假设只有当特定数量的不同生物因素影响细胞时,具有转移能力的肿瘤细胞才会产生可检测到的肿瘤块。新模型的特殊情况包括促进时间(比例风险)、几何(比例优势)和负二项治愈率模型等。此外,我们的模型推广了特定的转换治愈率模型族以及一些经过充分研究的破坏性治愈率模型。借助期望最大化算法进行精确似然推断;利用轮廓似然方法估计模型参数,同时借助似然比检验分析模型判别问题。一项模拟研究证明了所提出的推断方法的准确性。最后,作为示例,我们将所提出的模型应用于一个皮肤黑色素瘤数据集。版权所有© 2017约翰威立父子有限公司。