Department of Chemistry, ‡Life Sciences Institute, §Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States.
J Am Chem Soc. 2018 Feb 21;140(7):2430-2433. doi: 10.1021/jacs.7b13297. Epub 2018 Feb 8.
Like many complex natural products, the intricate architecture of saxitoxin (STX) has hindered full exploration of this scaffold's utility as a tool for studying voltage-gated sodium ion channels and as a pharmaceutical agent. Established chemical strategies can provide access to the natural product; however, a chemoenzymatic route to saxitoxin that could provide expedited access to related compounds has not been devised. The first step toward realizing a chemoenzymatic approach toward this class of molecules is the elucidation of the saxitoxin biosynthetic pathway. To date, a biochemical link between STX and its putative biosynthetic enzymes has not been demonstrated. Herein, we report the first biochemical characterization of any enzyme involved in STX biosynthesis. Specifically, the chemical functions of a polyketide-like synthase, SxtA, from the cyanobacteria Cylindrospermopsis raciborskii T3 are elucidated. This unique megasynthase is comprised of four domains: methyltransferase (MT), GCN5-related N-acetyltransferase (GNAT), acyl carrier protein (ACP), and the first example of an 8-amino-7-oxononanoate synthase (AONS) associated with a multidomain synthase. We have established that this single polypeptide carries out the formation of two carbon-carbon bonds, two decarboxylation events and a stereospecific protonation to afford the linear biosynthetic precursor to STX (4). The synthetic utility of the SxtA AONS is demonstrated by the synthesis of a suite of α-amino ketones from the corresponding α-amino acid in a single step.
与许多复杂的天然产物一样,石房蛤毒素 (STX) 的复杂结构阻碍了对该支架作为研究电压门控钠离子通道和药物制剂的工具的充分探索。已有的化学策略可以获得天然产物;然而,尚未设计出一种可用于石房蛤毒素的化学酶法途径,以提供相关化合物的快速获取途径。实现此类分子的化学酶法途径的第一步是阐明石房蛤毒素的生物合成途径。迄今为止,尚未证明 STX 与其假定生物合成酶之间存在生化联系。在此,我们报告了参与 STX 生物合成的任何酶的首次生化特征。具体来说,阐明了来自蓝藻 Cylindrospermopsis raciborskii T3 的聚酮样合酶 SxtA 的化学功能。这种独特的巨合酶由四个结构域组成:甲基转移酶 (MT)、GCN5 相关 N-乙酰转移酶 (GNAT)、酰基载体蛋白 (ACP) 和与多结构域合酶相关的第一个 8-氨基-7-氧代壬酸合酶 (AONS)。我们已经确定,这种单一多肽进行两个碳-碳键的形成、两个脱羧事件和立体特异性质子化,以提供 STX(4)的线性生物合成前体。SxtA AONS 的合成实用性通过从相应的α-氨基酸一步合成一系列α-酮酰胺得到证明。