School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, China.
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai, 200237, China.
Angew Chem Int Ed Engl. 2018 Mar 19;57(13):3366-3371. doi: 10.1002/anie.201712637. Epub 2018 Feb 22.
Structurally well-defined graphene nanoribbons (GNRs) have attracted great interest because of their unique optical, electronic, and magnetic properties. However, strong π-π interactions within GNRs result in poor liquid-phase dispersibility, which impedes further investigation of these materials in numerous research areas, including supramolecular self-assembly. Structurally defined GNRs were synthesized by a bottom-up strategy, involving grafting of hydrophilic poly(ethylene oxide) (PEO) chains of different lengths (GNR-PEO). PEO grafting of 42-51 % percent produces GNR-PEO materials with excellent dispersibility in water with high GNR concentrations of up to 0.5 mg mL . The "rod-coil" brush-like architecture of GNR-PEO resulted in 1D hierarchical self-assembly behavior in the aqueous phase, leading to the formation of ultralong nanobelts, or spring-like helices, with tunable mean diameters and pitches. In aqueous dispersions the superstructures absorbed in the near-infrared range, which enabled highly efficient conversion of photon energy into thermal energy.
结构明确的石墨烯纳米带(GNRs)因其独特的光学、电子和磁学性质而引起了极大的兴趣。然而,GNRs 内部的强π-π相互作用导致其在液相中的分散性较差,这阻碍了这些材料在包括超分子自组装在内的众多研究领域的进一步研究。通过自下而上的策略合成了结构明确的 GNRs,包括不同长度的亲水性聚(氧化乙烯)(PEO)链的接枝(GNR-PEO)。PEO 的接枝率为 42-51%,可在高达 0.5mg/ml 的高 GNR 浓度下,在水中产生具有出色分散性的 GNR-PEO 材料。GNR-PEO 的“棒-链”刷状结构导致在水相中形成 1D 分级自组装行为,从而形成具有可调平均直径和螺距的超长纳米带或类似弹簧的螺旋体。在水相分散体中,超结构吸收近红外区域,从而能够将光子能量高效地转化为热能。