Suppr超能文献

基于跟踪纳米级细胞膜变形对单细胞上的膜蛋白与小分子结合的无标记定量分析。

Label-Free Quantification of Small-Molecule Binding to Membrane Proteins on Single Cells by Tracking Nanometer-Scale Cellular Membrane Deformation.

机构信息

Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States.

School of Electrical Computer and Energy Engineering, Arizona State University , Tempe, Arizona 85287, United States.

出版信息

ACS Nano. 2018 Feb 27;12(2):2056-2064. doi: 10.1021/acsnano.8b00235. Epub 2018 Feb 6.

Abstract

Measuring molecular binding to membrane proteins is critical for understanding cellular functions, validating biomarkers, and screening drugs. Despite the importance, developing such a capability has been a difficult challenge, especially for small-molecule binding to membrane proteins in their native cellular environment. Here we show that the binding of both large and small molecules to membrane proteins can be quantified on single cells by trapping single cells with a microfluidic device and detecting binding-induced cellular membrane deformation on the nanometer scale with label-free optical imaging. We develop a thermodynamic model to describe the binding-induced membrane deformation, validate the model by examining the dependence of membrane deformation on cell stiffness, membrane protein expression level, and binding affinity, and study four major types of membrane proteins, including glycoproteins, ion channels, G-protein coupled receptors, and tyrosine kinase receptors. The single-cell detection capability reveals the importance of local membrane environment on molecular binding and variability in the binding kinetics of different cell lines and heterogeneity of different cells within the same cell line.

摘要

测量分子与膜蛋白的结合对于理解细胞功能、验证生物标志物和筛选药物至关重要。尽管这很重要,但开发这种能力一直是一个艰巨的挑战,特别是对于小分子在其天然细胞环境中与膜蛋白的结合。在这里,我们展示了通过使用微流控设备捕获单个细胞,并使用无标记的光学成像在纳米尺度上检测结合诱导的细胞膜变形,可以在单细胞上定量测量大分子和小分子与膜蛋白的结合。我们开发了一个热力学模型来描述结合诱导的细胞膜变形,通过检查膜变形对细胞刚度、膜蛋白表达水平和结合亲和力的依赖性来验证该模型,并研究了四种主要类型的膜蛋白,包括糖蛋白、离子通道、G 蛋白偶联受体和酪氨酸激酶受体。单细胞检测能力揭示了局部膜环境对分子结合的重要性以及不同细胞系之间结合动力学的可变性和同一细胞系内不同细胞的异质性。

相似文献

10
Magnetic Ranking Cytometry: Profiling Rare Cells at the Single-Cell Level.磁珠流式细胞术:单细胞水平稀有细胞的分析。
Acc Chem Res. 2020 Aug 18;53(8):1445-1457. doi: 10.1021/acs.accounts.0c00179. Epub 2020 Jul 14.

引用本文的文献

1
Quantitative, Label-Free Mapping of Cell Force Dynamics.细胞力动力学的定量、无标记映射
Small. 2025 Aug;21(31):e2501394. doi: 10.1002/smll.202501394. Epub 2025 Jun 1.
9
Optical Imaging of Electrical and Mechanical Couplings between Cells.细胞电-机械耦联的光学成像
ACS Sens. 2021 Feb 26;6(2):508-512. doi: 10.1021/acssensors.0c02058. Epub 2020 Dec 22.

本文引用的文献

6
Membrane curvature at a glance.膜曲率一览。
J Cell Sci. 2015 Mar 15;128(6):1065-70. doi: 10.1242/jcs.114454.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验