Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA.
School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA.
Angew Chem Int Ed Engl. 2022 Oct 17;61(42):e202209469. doi: 10.1002/anie.202209469. Epub 2022 Aug 23.
Surface plasmon resonance microscopy (SPRM) is an excellent platform for in situ studying cell-substrate interactions. However, SPRM suffers from poor spatial resolution and small field of view. Herein, we demonstrate plasmonic scattering microscopy (PSM) by adding a dry objective on a popular prism-coupled surface plasmon resonance (SPR) system. PSM not only retains SPRM's high sensitivity and real-time analysis capability, but also provides ≈7 times higher spatial resolution and ≈70 times larger field of view than the typical SPRM, thus providing more details about membrane protein response to ligand binding on over 100 cells simultaneously. In addition, PSM allows quantifying the target movements in the axial direction with a high spatial resolution, thus allowing mapping adhesion spring constants for quantitatively describing the mechanical properties of the cell-substrate contacts. This work may offer a powerful and cost-effective strategy for upgrading current SPR products.
表面等离子体共振显微镜(SPRM)是一种用于原位研究细胞-基底相互作用的优秀平台。然而,SPRM 的空间分辨率较差,视场较小。在此,我们通过在流行的棱镜耦合表面等离子体共振(SPR)系统上添加干式物镜来展示等离子体散射显微镜(PSM)。PSM 不仅保留了 SPRM 的高灵敏度和实时分析能力,而且与典型的 SPRM 相比,提供了 ≈7 倍的更高空间分辨率和 ≈70 倍的更大视场,从而能够同时提供有关超过 100 个细胞的膜蛋白对配体结合的响应的更多细节。此外,PSM 允许以高空间分辨率定量测量轴向方向上的目标运动,从而能够映射粘附弹性常数,以定量描述细胞-基底接触的力学特性。这项工作可能为升级当前的 SPR 产品提供一种强大且具有成本效益的策略。