Royston Patrick, Sauerbrei Willi
MRC Clinical Trials Unit, University College London, London, UK.
Center for Medical Biometry and Medical Informatics Medical Center-University of Freiburg, Freiburg, Germany.
Stata J. 2016 Jan;16(1):72-87.
In a recent article, Royston (2015, 15: 275-291) introduced the approximate cumulative distribution (acd) transformation of a continuous covariate as a route toward modeling a sigmoid relationship between and an outcome variable. In this article, we extend the approach to multivariable modeling by modifying the standard Stata program mfp. The result is a new program, mfpa, that has all the features of mfp plus the ability to fit a new model for user-selected covariates that we call fp1(, ). The fp1(, ) model comprises the best-fitting combination of a dimension-one fractional polynomial (fp1) function of and an fp1 function of acd (). We describe a new model-selection algorithm called function-selection procedure with acd transformation, which uses significance testing to attempt to simplify an fp1(, ) model to a submodel, an fp1 or linear model in or in acd (). The function-selection procedure with acd transformation is related in concept to the fsp (fp function-selection procedure), which is an integral part of mfp and which is used to simplify a dimension-two (fp2) function. We describe the mfpa command and give univariable and multivariable examples with real data to demonstrate its use.
在最近一篇文章中,罗伊斯顿(2015年,第15卷:275 - 291页)介绍了连续协变量的近似累积分布(acd)变换,作为建立协变量与结果变量之间S形关系模型的一种途径。在本文中,我们通过修改标准的Stata程序mfp将该方法扩展到多变量建模。结果得到一个新程序mfpa,它具有mfp的所有功能,还能够为用户选择的协变量拟合一个我们称为fp1(, )的新模型。fp1(, )模型由协变量的一维分数多项式(fp1)函数与acd()的fp1函数的最佳拟合组合构成。我们描述了一种新的模型选择算法,称为带acd变换的函数选择程序,它使用显著性检验试图将fp1(, )模型简化为一个子模型,即协变量或acd()中的fp1或线性模型。带acd变换的函数选择程序在概念上与fsp(fp函数选择程序)相关,fsp是mfp的一个组成部分,用于简化二维(fp2)函数。我们描述了mfpa命令,并给出单变量和多变量的实际数据示例以展示其用法。