Lu Hsuan-Hao, Lukens Joseph M, Peters Nicholas A, Odele Ogaga D, Leaird Daniel E, Weiner Andrew M, Lougovski Pavel
School of Electrical and Computer Engineering and Purdue Quantum Center, Purdue University, West Lafayette, Indiana 47907, USA.
Quantum Information Science Group, Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
Phys Rev Lett. 2018 Jan 19;120(3):030502. doi: 10.1103/PhysRevLett.120.030502.
We report the experimental realization of high-fidelity photonic quantum gates for frequency-encoded qubits and qutrits based on electro-optic modulation and Fourier-transform pulse shaping. Our frequency version of the Hadamard gate offers near-unity fidelity (0.99998±0.00003), requires only a single microwave drive tone for near-ideal performance, functions across the entire C band (1530-1570 nm), and can operate concurrently on multiple qubits spaced as tightly as four frequency modes apart, with no observable degradation in the fidelity. For qutrits, we implement a 3×3 extension of the Hadamard gate: the balanced tritter. This tritter-the first ever demonstrated for frequency modes-attains fidelity 0.9989±0.0004. These gates represent important building blocks toward scalable, high-fidelity quantum information processing based on frequency encoding.
我们报告了基于电光调制和傅里叶变换脉冲整形实现的用于频率编码量子比特和量子三态的高保真光子量子门的实验成果。我们的频率版哈达玛门保真度接近1(0.99998±0.00003),近乎理想性能仅需单个微波驱动信号,可在整个C波段(1530 - 1570纳米)工作,并且能在间距仅为四个频率模式的多个量子比特上同时运行,保真度无明显下降。对于量子三态,我们实现了哈达玛门的3×3扩展:平衡三态门。这个三态门——首次在频率模式中得到演示——保真度达到0.9989±0.0004。这些门是基于频率编码实现可扩展、高保真量子信息处理的重要组成部分。