Suppr超能文献

智慧城市中的群体感知:概述、平台及环境感知问题

Crowdsensing in Smart Cities: Overview, Platforms, and Environment Sensing Issues.

作者信息

Alvear Oscar, Calafate Carlos T, Cano Juan-Carlos, Manzoni Pietro

机构信息

Department of Computer Engineering, Universitat Politecnica de Valencia, 46022 Valencia, Spain.

Department of Electrical Engineering, Electronics and Telecommunications, Universidad de Cuenca, Cuenca 010150, Ecuador.

出版信息

Sensors (Basel). 2018 Feb 4;18(2):460. doi: 10.3390/s18020460.

Abstract

Evidence shows that Smart Cities are starting to materialise in our lives through the gradual introduction of the Internet of Things (IoT) paradigm. In this scope, crowdsensing emerges as a powerful solution to address environmental monitoring, allowing to control air pollution levels in crowded urban areas in a distributed, collaborative, inexpensive and accurate manner. However, even though technology is already available, such environmental sensing devices have not yet reached consumers. In this paper, we present an analysis of candidate technologies for crowdsensing architectures, along with the requirements for empowering users with air monitoring capabilities. Specifically, we start by providing an overview of the most relevant IoT architectures and protocols. Then, we present the general design of an off-the-shelf mobile environmental sensor able to cope with air quality monitoring requirements; we explore different hardware options to develop the desired sensing unit using readily available devices, discussing the main technical issues associated with each option, thereby opening new opportunities in terms of environmental monitoring programs.

摘要

有证据表明,通过物联网(IoT)范式的逐步引入,智慧城市开始在我们的生活中显现出来。在此背景下,群体传感作为一种解决环境监测问题的强大方案应运而生,它能够以分布式、协作式、低成本且准确的方式控制拥挤城市地区的空气污染水平。然而,尽管技术已经具备,但此类环境传感设备尚未普及到消费者手中。在本文中,我们对群体传感架构的候选技术进行了分析,并探讨了赋予用户空气监测能力的相关要求。具体而言,我们首先概述了最相关的物联网架构和协议。然后,我们展示了一种能够满足空气质量监测要求的现成移动环境传感器的总体设计;我们探索了使用现成设备开发所需传感单元的不同硬件选项,讨论了与每个选项相关的主要技术问题,从而在环境监测计划方面开辟了新的机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eca/5855194/585913b50a8d/sensors-18-00460-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验