Suppr超能文献

将图灵与 3D 顶点模型相结合,可再现具有波动、管状化和分支的自主多细胞形态发生。

Combining Turing and 3D vertex models reproduces autonomous multicellular morphogenesis with undulation, tubulation, and branching.

机构信息

RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.

PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.

出版信息

Sci Rep. 2018 Feb 5;8(1):2386. doi: 10.1038/s41598-018-20678-6.

Abstract

This study demonstrates computational simulations of multicellular deformation coupled with chemical patterning in the three-dimensional (3D) space. To address these aspects, we proposes a novel mathematical model, where a reaction-diffusion system is discretely expressed at a single cell level and combined with a 3D vertex model. To investigate complex phenomena emerging from the coupling of patterning and deformation, as an example, we employed an activator-inhibitor system and converted the activator concentration of individual cells into their growth rate. Despite the simplicity of the model, by growing a monolayer cell vesicle, the coupling system provided rich morphological dynamics such as undulation, tubulation, and branching. Interestingly, the morphological variety depends on the difference in time scales between patterning and deformation, and can be partially understood by the intrinsic hysteresis in the activator-inhibitor system with domain growth. Importantly, the model can be applied to 3D multicellular dynamics that couple the reaction-diffusion patterning with various cell behaviors, such as deformation, rearrangement, division, apoptosis, differentiation, and proliferation. Thus, the results demonstrate the significant advantage of the proposed model as well as the biophysical importance of exploring spatiotemporal dynamics of the coupling phenomena of patterning and deformation in 3D space.

摘要

本研究展示了在三维(3D)空间中进行的多细胞变形与化学图案形成的计算模拟。为了解决这些方面的问题,我们提出了一种新的数学模型,其中将反应-扩散系统离散表示在单个细胞水平上,并与 3D 顶点模型相结合。为了研究图案形成和变形耦合所产生的复杂现象,我们以激活剂-抑制剂系统为例,将单个细胞的激活剂浓度转化为其生长速率。尽管模型很简单,但通过生长单层细胞囊泡,耦合系统提供了丰富的形态动力学,例如波动、管状化和分支。有趣的是,形态多样性取决于图案形成和变形之间的时间尺度差异,并且可以通过具有域生长的激活剂-抑制剂系统中的固有滞后部分来理解。重要的是,该模型可以应用于与各种细胞行为(例如变形、重排、分裂、凋亡、分化和增殖)耦合的反应-扩散图案形成的 3D 多细胞动力学。因此,研究结果表明了所提出模型的显著优势,以及探索 3D 空间中图案形成和变形耦合现象的时空动力学的生物物理重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84df/5799218/f4bf9dd266ce/41598_2018_20678_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验