Suppr超能文献

从超短到超长时标下的脑代谢物扩散:我们学到了什么,我们该何去何从?

Brain Metabolite Diffusion from Ultra-Short to Ultra-Long Time Scales: What Do We Learn, Where Should We Go?

作者信息

Valette Julien, Ligneul Clémence, Marchadour Charlotte, Najac Chloé, Palombo Marco

机构信息

Commissariat à l'Energie Atomique et aux Energies Alternatives, MIRCen, Fontenay-aux-Roses, France.

Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Fontenay-aux-Roses, France.

出版信息

Front Neurosci. 2018 Jan 19;12:2. doi: 10.3389/fnins.2018.00002. eCollection 2018.

Abstract

diffusion-weighted MR spectroscopy (DW-MRS) allows measuring diffusion properties of brain metabolites. Unlike water, most metabolites are confined within cells. Hence, their diffusion is expected to purely reflect intracellular properties, opening unique possibilities to use metabolites as specific probes to explore cellular organization and structure. However, interpretation and modeling of DW-MRS, and more generally of intracellular diffusion, remains difficult. In this perspective paper, we will focus on the study of the time-dependency of brain metabolite apparent diffusion coefficient (ADC). We will see how measuring ADC over several orders of magnitude of diffusion times, from less than 1 ms to more than 1 s, allows clarifying our understanding of brain metabolite diffusion, by firmly establishing that metabolites are neither massively transported by active mechanisms nor massively confined in subcellular compartments or cell bodies. Metabolites appear to be instead diffusing in long fibers typical of neurons and glial cells such as astrocytes. Furthermore, we will evoke modeling of ADC time-dependency to evaluate the effect of, and possibly quantify, some structural parameters at various spatial scales, departing from a simple model of hollow cylinders and introducing additional complexity, either short-ranged (such as dendritic spines) or long-ranged (such as cellular fibers ramification). Finally, we will discuss the experimental feasibility and expected benefits of extending the range of diffusion times toward even shorter and longer values.

摘要

扩散加权磁共振波谱(DW-MRS)能够测量脑代谢物的扩散特性。与水不同,大多数代谢物局限于细胞内。因此,它们的扩散预计纯粹反映细胞内特性,为利用代谢物作为探索细胞组织和结构的特定探针提供了独特的可能性。然而,DW-MRS以及更一般的细胞内扩散的解释和建模仍然困难。在这篇观点论文中,我们将专注于研究脑代谢物表观扩散系数(ADC)的时间依赖性。我们将看到,在从小于1毫秒到大于1秒的几个数量级的扩散时间内测量ADC,如何通过明确代谢物既不是通过主动机制大量运输,也不是大量局限于亚细胞区室或细胞体,从而澄清我们对脑代谢物扩散的理解。相反,代谢物似乎在神经元和胶质细胞(如星形胶质细胞)典型的长纤维中扩散。此外,我们将探讨ADC时间依赖性的建模,以评估各种空间尺度上某些结构参数的影响,并可能对其进行量化,从简单的空心圆柱体模型出发,引入额外的复杂性,无论是短程的(如树突棘)还是长程的(如细胞纤维分支)。最后,我们将讨论将扩散时间范围扩展到更短和更长值的实验可行性和预期益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac02/5780428/bdc6aab1569c/fnins-12-00002-g0001.jpg

相似文献

1
Brain Metabolite Diffusion from Ultra-Short to Ultra-Long Time Scales: What Do We Learn, Where Should We Go?
Front Neurosci. 2018 Jan 19;12:2. doi: 10.3389/fnins.2018.00002. eCollection 2018.
2
Can we detect the effect of spines and leaflets on the diffusion of brain intracellular metabolites?
Neuroimage. 2017 May 8;182:283-293. doi: 10.1016/j.neuroimage.2017.05.003.
5
Practical considerations of diffusion-weighted MRS with ultra-strong diffusion gradients.
Front Neurosci. 2023 Dec 7;17:1258408. doi: 10.3389/fnins.2023.1258408. eCollection 2023.
6
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
7
Insights into brain microstructure from in vivo DW-MRS.
Neuroimage. 2018 Nov 15;182:97-116. doi: 10.1016/j.neuroimage.2017.11.028. Epub 2017 Nov 16.
8
Diffusion-weighted MR spectroscopy (DW-MRS) is sensitive to LPS-induced changes in human glial morphometry: A preliminary study.
Brain Behav Immun. 2022 Jan;99:256-265. doi: 10.1016/j.bbi.2021.10.005. Epub 2021 Oct 18.

引用本文的文献

2
Single-shot diffusion trace spectroscopic imaging using radial echo planar trajectories.
Magn Reson Med. 2024 Sep;92(3):926-944. doi: 10.1002/mrm.30125. Epub 2024 May 10.
4
Assessing potential correlation between T relaxation and diffusion of lactate in the mouse brain.
Magn Reson Med. 2022 Nov;88(5):2277-2284. doi: 10.1002/mrm.29395. Epub 2022 Jul 30.
6
Mapping complex cell morphology in the grey matter with double diffusion encoding MR: A simulation study.
Neuroimage. 2021 Nov 1;241:118424. doi: 10.1016/j.neuroimage.2021.118424. Epub 2021 Jul 24.
7
Current and Emerging MR Methods and Outcome in Rodent Models of Parkinson's Disease: A Review.
Front Neurosci. 2021 Apr 7;15:583678. doi: 10.3389/fnins.2021.583678. eCollection 2021.
8
The present and the future of microstructure MRI: From a paradigm shift to normal science.
J Neurosci Methods. 2021 Mar 1;351:108947. doi: 10.1016/j.jneumeth.2020.108947. Epub 2020 Oct 21.
9
Changes in the intracellular microenvironment in the aging human brain.
Neurobiol Aging. 2020 Nov;95:168-175. doi: 10.1016/j.neurobiolaging.2020.07.017. Epub 2020 Jul 25.
10
Challenges for biophysical modeling of microstructure.
J Neurosci Methods. 2020 Oct 1;344:108861. doi: 10.1016/j.jneumeth.2020.108861. Epub 2020 Jul 18.

本文引用的文献

1
Can we detect the effect of spines and leaflets on the diffusion of brain intracellular metabolites?
Neuroimage. 2017 May 8;182:283-293. doi: 10.1016/j.neuroimage.2017.05.003.
4
New paradigm to assess brain cell morphology by diffusion-weighted MR spectroscopy in vivo.
Proc Natl Acad Sci U S A. 2016 Jun 14;113(24):6671-6. doi: 10.1073/pnas.1504327113. Epub 2016 May 25.
6
Metabolite and macromolecule T1 and T2 relaxation times in the rat brain in vivo at 17.2T.
Magn Reson Med. 2016 Feb;75(2):503-14. doi: 10.1002/mrm.25602. Epub 2015 Mar 29.
8
Revealing mesoscopic structural universality with diffusion.
Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5088-93. doi: 10.1073/pnas.1316944111. Epub 2014 Mar 24.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验