Li Kai, Rüdiger Heinz, Haase Rocco, Ziemssen Tjalf
Autonomic and Neuroendocrinological Lab, Department of Neurology, Center of Clinical Neuroscience, University Hospital Carl-Gustav Carus, Technical University of Dresden, Dresden, Germany.
Department of Neurology, Beijing Hospital, National Center of Gerontology, Beijing, China.
Front Physiol. 2018 Jan 22;9:10. doi: 10.3389/fphys.2018.00010. eCollection 2018.
As the multiple trigonometric regressive spectral (MTRS) analysis is extraordinary in its ability to analyze short local data segments down to 12 s, we wanted to evaluate the impact of the data segment settings by applying the technique of MTRS analysis for baroreflex sensitivity (BRS) estimation using a standardized data pool. Spectral and baroreflex analyses were performed on the EuroBaVar dataset (42 recordings, including lying and standing positions). For this analysis, the technique of MTRS was used. We used different global and local data segment lengths, and chose the global data segments from different positions. Three global data segments of 1 and 2 min and three local data segments of 12, 20, and 30 s were used in MTRS analysis for BRS. All the BRS-values calculated on the three global data segments were highly correlated, both in the supine and standing positions; the different global data segments provided similar BRS estimations. When using different local data segments, all the BRS-values were also highly correlated. However, in the supine position, using short local data segments of 12 s overestimated BRS compared with those using 20 and 30 s. In the standing position, the BRS estimations using different local data segments were comparable. There was no proportional bias for the comparisons between different BRS estimations. We demonstrate that BRS estimation by the MTRS technique is stable when using different global data segments, and MTRS is extraordinary in its ability to evaluate BRS in even short local data segments (20 and 30 s). Because of the non-stationary character of most biosignals, the MTRS technique would be preferable for BRS analysis especially in conditions when only short stationary data segments are available or when dynamic changes of BRS should be monitored.
由于多重三角回归频谱(MTRS)分析在分析短至12秒的局部数据段方面具有非凡能力,我们希望通过使用标准化数据集应用MTRS分析技术来估计压力反射敏感性(BRS),以评估数据段设置的影响。对EuroBaVar数据集(42次记录,包括仰卧位和站立位)进行了频谱分析和压力反射分析。在此分析中,使用了MTRS技术。我们使用了不同的全局和局部数据段长度,并从不同位置选择了全局数据段。在MTRS分析BRS时,使用了1分钟和2分钟的三个全局数据段以及12秒、20秒和30秒的三个局部数据段。在仰卧位和站立位,在三个全局数据段上计算的所有BRS值都高度相关;不同的全局数据段提供了相似的BRS估计值。当使用不同的局部数据段时,所有BRS值也高度相关。然而,在仰卧位,与使用20秒和30秒的情况相比,使用12秒的短局部数据段高估了BRS。在站立位,使用不同局部数据段的BRS估计值相当。不同BRS估计值之间的比较没有比例偏差。我们证明,当使用不同的全局数据段时,通过MTRS技术进行的BRS估计是稳定的,并且MTRS在评估甚至短的局部数据段(20秒和30秒)中的BRS方面具有非凡能力。由于大多数生物信号的非平稳特性,MTRS技术对于BRS分析将是更可取的,特别是在仅可获得短的平稳数据段或应监测BRS动态变化的情况下。