Li Kai, Rüdiger Heinz, Ziemssen Tjalf
Autonomic and Neuroendocrinological Lab, Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany.
Department of Neurology, Beijing Hospital, National Center of Gerontology, Beijing, China.
Front Neurol. 2019 May 29;10:545. doi: 10.3389/fneur.2019.00545. eCollection 2019.
Spectral analysis of heart rate variability (HRV) is a valuable tool for the assessment of cardiovascular autonomic function. Fast Fourier transform and autoregressive based spectral analysis are two most commonly used approaches for HRV analysis, while new techniques such as trigonometric regressive spectral (TRS) and wavelet transform have been developed. Short-term (on ECG of several minutes) and long-term (typically on ECG of 1-24 h) HRV analyses have different advantages and disadvantages. This article reviews the characteristics of spectral HRV studies using different lengths of time windows. Short-term HRV analysis is a convenient method for the estimation of autonomic status, and can track dynamic changes of cardiac autonomic function within minutes. Long-term HRV analysis is a stable tool for assessing autonomic function, describe the autonomic function change over hours or even longer time spans, and can reliably predict prognosis. The choice of appropriate time window is essential for research of autonomic function using spectral HRV analysis.
心率变异性(HRV)的频谱分析是评估心血管自主神经功能的一项重要工具。基于快速傅里叶变换和自回归的频谱分析是HRV分析中最常用的两种方法,同时诸如三角回归频谱(TRS)和小波变换等新技术也已得到开发。短期(数分钟心电图)和长期(通常为1 - 24小时心电图)HRV分析各有优缺点。本文综述了使用不同时长时间窗的HRV频谱研究的特点。短期HRV分析是评估自主神经状态的便捷方法,能够在数分钟内追踪心脏自主神经功能的动态变化。长期HRV分析是评估自主神经功能的稳定工具,可描述数小时甚至更长时间段内的自主神经功能变化,并能可靠地预测预后。对于使用HRV频谱分析研究自主神经功能而言,选择合适的时间窗至关重要。