Suppr超能文献

采用镍铝层状双氢氧化物纳米颗粒预富集后,对人血清和制药废水样品中的甲芬那酸进行痕量分析。

Trace analysis of mefenamic acid in human serum and pharmaceutical wastewater samples after pre-concentration with Ni-Al layered double hydroxide nano-particles.

作者信息

Abdolmohammad-Zadeh Hossein, Morshedzadeh Fatemeh, Rahimpour Elaheh

机构信息

Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, 35 Km Tabriz-Marageh Road, P.O. Box 53714-161, Tabriz, Iran.

Department of Chemistry, Payame Nour University of Tabriz, P.O. Box 19395-3697, Tabriz, Iran.

出版信息

J Pharm Anal. 2014 Oct;4(5):331-338. doi: 10.1016/j.jpha.2014.04.003. Epub 2014 May 23.

Abstract

In this work, the nickel-aluminum layered double hydroxide (Ni-Al LDH) with nitrate interlayer anion was synthesized and used as a solid phase extraction sorbent for the selective separation and pre-concentration of mefenamic acid prior to quantification by UV detection at =286 nm. Extraction procedure is based on the adsorption of mefenamate anions on the Ni-Al(NO) LDH and/or their exchange with LDH interlayer NO anions. The effects of several parameters such as cations and interlayer anions type in LDH structure, pH, sample flow rate, elution conditions, amount of nano-sorbent and co-existing ions on the extraction were investigated and optimized. Under the optimum conditions, the calibration graph was linear within the range of 2-1000 µg/L with a correlation coefficient of 0.9995. The limit of detection and relative standard deviation were 0.6 µg/L and 0.84% (30 µg/L, =6), respectively. The presented method was successfully applied to determine of mefenamic acid in human serum and pharmaceutical wastewater samples.

摘要

在本研究中,合成了具有硝酸根层间阴离子的镍铝层状双氢氧化物(Ni-Al LDH),并将其用作固相萃取吸附剂,用于在286 nm处通过紫外检测进行定量分析之前,对甲芬那酸进行选择性分离和预富集。萃取过程基于甲芬那酸阴离子在Ni-Al(NO) LDH上的吸附和/或它们与LDH层间NO阴离子的交换。研究并优化了几个参数对萃取的影响,如LDH结构中的阳离子和层间阴离子类型、pH值、样品流速、洗脱条件、纳米吸附剂用量和共存离子。在最佳条件下,校准曲线在2-1000 μg/L范围内呈线性,相关系数为0.9995。检测限和相对标准偏差分别为0.6 μg/L和0.84%(30 μg/L,n=6)。该方法成功应用于测定人血清和制药废水中的甲芬那酸。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b483/5761361/ec7ea3d7612f/sc1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验