Vila-Farres Xavier, Chu John, Ternei Melinda A, Lemetre Christophe, Park Steven, Perlin David S, Brady Sean F
Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, New York, USA.
Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.
mSphere. 2018 Jan 24;3(1). doi: 10.1128/mSphere.00528-17. eCollection 2018 Jan-Feb.
The antibiotic paenimucillin A was originally identified using a culture-independent synthetic-bioinformatic natural product (syn-BNP) discovery approach. Here we report on a bioinformatics-guided survey of paenimucillin A analogs that led to the discovery of paenimucillin C. Paenimucillin C inhibits the growth of multidrug-resistant (MDR) clinical isolates, as well as other Gram-negative bacterial pathogens. In a rat cutaneous wound model, it completely sterilized MDR wound infections with no sign of rebound. Mechanistic studies point to a membrane-associated mode of action that results in leakage of intracellular contents. Natural product-inspired antibiotics have saved millions of lives and played a critical role in modern medicine. However, the emergence of drug-resistant pathogens is outpacing the rate at which new clinically useful antibiotics are being discovered. The lack of a means to combat infections caused by multidrug-resistant (MDR) is of particular concern. The sharp increase in cases of MDR infections in recent years prompted the CDC (https://www.cdc.gov/drugresistance/biggest_threats.html) and WHO (http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/) to list this pathogen as a "serious threat" and "critical pathogen," respectively. Here we report a new antibiotic, paenimucillin C, active against Gram-negative bacterial pathogens, including many clinical isolates of MDR strains. Mechanistic studies point to membrane disruption leading to leakage of intracellular contents as its antibacterial mode of action. Paenimucillin C sterilizes MDR infections in a rat cutaneous wound model with no sign of rebound infection, providing a potential new therapeutic regimen.
抗生素青霉肽A最初是通过一种不依赖培养的合成生物信息学天然产物(syn-BNP)发现方法鉴定出来的。在此,我们报告了一项对青霉肽A类似物的生物信息学引导调查,该调查导致了青霉肽C的发现。青霉肽C能抑制多重耐药(MDR)临床分离株以及其他革兰氏阴性细菌病原体的生长。在大鼠皮肤伤口模型中,它能使MDR伤口感染完全无菌,且没有反弹迹象。机制研究表明其作用模式与细胞膜相关,会导致细胞内物质泄漏。受天然产物启发的抗生素拯救了数百万人的生命,并在现代医学中发挥了关键作用。然而,耐药病原体的出现速度超过了新的临床有用抗生素的发现速度。缺乏对抗多重耐药(MDR)病原体引起的感染的手段尤其令人担忧。近年来MDR感染病例的急剧增加促使美国疾病控制与预防中心(https://www.cdc.gov/drugresistance/biggest_threats.html)和世界卫生组织(http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/)分别将这种病原体列为“严重威胁”和“关键病原体”。在此,我们报告了一种新的抗生素青霉肽C,它对革兰氏阴性细菌病原体有效,包括许多MDR菌株的临床分离株。机制研究表明,其抗菌作用模式是膜破坏导致细胞内物质泄漏。青霉肽C能使大鼠皮肤伤口模型中的MDR感染无菌,且没有反弹感染的迹象,提供了一种潜在的新治疗方案。