Kang Ji-Yong, Kawaguchi Daichi, Wang Lei
Department of Neuroscience, School of Medicine, Tufts University, Boston, MA, USA.
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
Methods Mol Biol. 2018;1728:263-277. doi: 10.1007/978-1-4939-7574-7_17.
Deciphering neuronal networks governing specific brain functions is a longstanding mission in neuroscience, yet global manipulation of protein functions pharmacologically or genetically lacks sufficient specificity to reveal a neuronal protein's function in a particular neuron or a circuitry. Photostimulation presents a great venue for researchers to control neuronal proteins with high temporal and spatial resolution. Recently, an approach to optically control the function of a neuronal protein directly in neurons has been demonstrated using genetically encoded light-sensitive Unnatural amino acids (Uaas). Here, we describe procedures for genetically incorporating Uaas into target neuronal proteins in neurons in vitro and in embryonic mouse brain. As an example, a photocaged Uaa was incorporated into an inwardly rectifying potassium channel Kir2.1 to render Kir2.1 photo-activatable. This method has the potential to be generally applied to many neuronal proteins to achieve optical regulation of different processes in brains. Uaas with other properties can be similarly incorporated into neuronal proteins in neurons for various applications.
破解支配特定脑功能的神经网络是神经科学领域一项长期的任务,然而,通过药理学或遗传学手段对蛋白质功能进行全局操纵,缺乏足够的特异性来揭示神经元蛋白质在特定神经元或神经回路中的功能。光刺激为研究人员提供了一个以高时空分辨率控制神经元蛋白质的绝佳途径。最近,一种直接在神经元中光学控制神经元蛋白质功能的方法已通过使用基因编码的光敏感非天然氨基酸(Uaas)得到证实。在此,我们描述了在体外神经元和胚胎小鼠大脑中,将Uaas基因掺入靶神经元蛋白质的方法。例如,一种光笼蔽的Uaa被掺入内向整流钾通道Kir2.1中,使Kir2.1具有光激活能力。该方法有可能普遍应用于许多神经元蛋白质,以实现对大脑中不同过程的光学调控。具有其他特性的Uaas同样可以掺入神经元中的神经元蛋白质,用于各种应用。