Suppr超能文献

在体外培养的神经元和胚胎小鼠大脑中对非天然氨基酸进行基因编码以实现对神经元蛋白质的光学控制。

Genetically Encoding Unnatural Amino Acids in Neurons In Vitro and in the Embryonic Mouse Brain for Optical Control of Neuronal Proteins.

作者信息

Kang Ji-Yong, Kawaguchi Daichi, Wang Lei

机构信息

Department of Neuroscience, School of Medicine, Tufts University, Boston, MA, USA.

Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.

出版信息

Methods Mol Biol. 2018;1728:263-277. doi: 10.1007/978-1-4939-7574-7_17.

Abstract

Deciphering neuronal networks governing specific brain functions is a longstanding mission in neuroscience, yet global manipulation of protein functions pharmacologically or genetically lacks sufficient specificity to reveal a neuronal protein's function in a particular neuron or a circuitry. Photostimulation presents a great venue for researchers to control neuronal proteins with high temporal and spatial resolution. Recently, an approach to optically control the function of a neuronal protein directly in neurons has been demonstrated using genetically encoded light-sensitive Unnatural amino acids (Uaas). Here, we describe procedures for genetically incorporating Uaas into target neuronal proteins in neurons in vitro and in embryonic mouse brain. As an example, a photocaged Uaa was incorporated into an inwardly rectifying potassium channel Kir2.1 to render Kir2.1 photo-activatable. This method has the potential to be generally applied to many neuronal proteins to achieve optical regulation of different processes in brains. Uaas with other properties can be similarly incorporated into neuronal proteins in neurons for various applications.

摘要

破解支配特定脑功能的神经网络是神经科学领域一项长期的任务,然而,通过药理学或遗传学手段对蛋白质功能进行全局操纵,缺乏足够的特异性来揭示神经元蛋白质在特定神经元或神经回路中的功能。光刺激为研究人员提供了一个以高时空分辨率控制神经元蛋白质的绝佳途径。最近,一种直接在神经元中光学控制神经元蛋白质功能的方法已通过使用基因编码的光敏感非天然氨基酸(Uaas)得到证实。在此,我们描述了在体外神经元和胚胎小鼠大脑中,将Uaas基因掺入靶神经元蛋白质的方法。例如,一种光笼蔽的Uaa被掺入内向整流钾通道Kir2.1中,使Kir2.1具有光激活能力。该方法有可能普遍应用于许多神经元蛋白质,以实现对大脑中不同过程的光学调控。具有其他特性的Uaas同样可以掺入神经元中的神经元蛋白质,用于各种应用。

相似文献

3
Genetic Encoding of Unnatural Amino Acids in C. elegans.
Methods Mol Biol. 2018;1728:389-408. doi: 10.1007/978-1-4939-7574-7_24.
5
Engineering the Genetic Code in Cells and Animals: Biological Considerations and Impacts.
Acc Chem Res. 2017 Nov 21;50(11):2767-2775. doi: 10.1021/acs.accounts.7b00376. Epub 2017 Oct 6.
6
In vivo expression of a light-activatable potassium channel using unnatural amino acids.
Neuron. 2013 Oct 16;80(2):358-70. doi: 10.1016/j.neuron.2013.08.016.
7
Recent advances in the optical control of protein function through genetic code expansion.
Curr Opin Chem Biol. 2018 Oct;46:99-107. doi: 10.1016/j.cbpa.2018.07.011. Epub 2018 Jul 26.
8
Genetic Code Expansion and Optoproteomics.
Yale J Biol Med. 2017 Dec 19;90(4):599-610. eCollection 2017 Dec.
9
Probing Ion Channel Structure and Function Using Light-Sensitive Amino Acids.
Trends Biochem Sci. 2018 Jun;43(6):436-451. doi: 10.1016/j.tibs.2018.02.012. Epub 2018 Apr 10.
10
Genetically encoding new bioreactivity.
N Biotechnol. 2017 Sep 25;38(Pt A):16-25. doi: 10.1016/j.nbt.2016.10.003. Epub 2016 Oct 6.

引用本文的文献

1
Optogenetics with Atomic Precision─A Comprehensive Review of Optical Control of Protein Function through Genetic Code Expansion.
Chem Rev. 2025 Feb 26;125(4):1663-1717. doi: 10.1021/acs.chemrev.4c00224. Epub 2025 Feb 10.
2
Applications of genetic code expansion and photosensitive UAAs in studying membrane proteins.
Open Life Sci. 2023 Oct 10;18(1):20220752. doi: 10.1515/biol-2022-0752. eCollection 2023.

本文引用的文献

1
Optogenetics: 10 years after ChR2 in neurons--views from the community.
Nat Neurosci. 2015 Sep;18(9):1202-12. doi: 10.1038/nn.4106.
2
In Situ Formation of an Azo Bridge on Proteins Controllable by Visible Light.
J Am Chem Soc. 2015 Sep 9;137(35):11218-21. doi: 10.1021/jacs.5b06234. Epub 2015 Aug 28.
3
Genetically encoding photoswitchable click amino acids in Escherichia coli and mammalian cells.
Angew Chem Int Ed Engl. 2014 Apr 7;53(15):3932-6. doi: 10.1002/anie.201400001. Epub 2014 Mar 11.
4
Genetically encoded chemical probes in cells reveal the binding path of urocortin-I to CRF class B GPCR.
Cell. 2013 Dec 5;155(6):1258-69. doi: 10.1016/j.cell.2013.11.008. Epub 2013 Nov 27.
5
In vivo expression of a light-activatable potassium channel using unnatural amino acids.
Neuron. 2013 Oct 16;80(2):358-70. doi: 10.1016/j.neuron.2013.08.016.
6
Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex.
Nat Protoc. 2012 Sep;7(9):1741-54. doi: 10.1038/nprot.2012.099. Epub 2012 Aug 30.
7
Expanding the genetic code of Caenorhabditis elegans using bacterial aminoacyl-tRNA synthetase/tRNA pairs.
ACS Chem Biol. 2012 Jul 20;7(7):1292-302. doi: 10.1021/cb200542j. Epub 2012 May 11.
8
The development and application of optogenetics.
Annu Rev Neurosci. 2011;34:389-412. doi: 10.1146/annurev-neuro-061010-113817.
10
Adding new chemistries to the genetic code.
Annu Rev Biochem. 2010;79:413-44. doi: 10.1146/annurev.biochem.052308.105824.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验