Jack H. Skirball Center for Chemical Biology and Proteomics, Glenn Center for Aging Research, The Salk Institute for Biological Studies, Jolla, California 92037, United States.
ACS Chem Biol. 2012 Jul 20;7(7):1292-302. doi: 10.1021/cb200542j. Epub 2012 May 11.
The genetic code specifies 20 common amino acids and is largely preserved in both single and multicellular organisms. Unnatural amino acids (Uaas) have been genetically incorporated into proteins by using engineered orthogonal tRNA/aminoacyl-tRNA synthetase (RS) pairs, enabling new research capabilities and precision inaccessible with common amino acids. We show here that Escherichia coli tyrosyl and leucyl amber suppressor tRNA/RS pairs can be evolved to incorporate different Uaas in response to the amber stop codon UAG into various proteins in Caenorhabditis elegans. To accurately report Uaa incorporation in worms, we found that it is crucial to integrate the UAG-containing reporter gene into the genome rather than to express it on an extrachromosomal array from which variable expression can lead to reporter activation independent of the amber-suppressing tRNA/RS. Synthesizing a Uaa in a dipeptide drives Uaa uptake and bioavailability. Uaa incorporation has dosage, temporal, tRNA copy, and temperature dependencies similar to those of endogenous amber suppression. Uaa incorporation efficiency was improved by impairing the nonsense-mediated mRNA decay pathway through knockdown of smg-1. We have generated stable transgenic worms capable of genetically encoding Uaas, enabling Uaa exploitation to address complex biological problems within a metazoan. We anticipate our strategies will be generally extendable to other multicellular organisms.
遗传密码指定了 20 种常见氨基酸,在单细胞和多细胞生物中基本都被保留下来。通过使用工程化的正交 tRNA/氨酰-tRNA 合成酶(RS)对,非天然氨基酸(Uaas)已被遗传整合到蛋白质中,从而使研究能力得到新的提升,并使使用常见氨基酸无法实现的精准度成为可能。我们在这里表明,大肠杆菌酪氨酸和亮氨酸琥珀酰基 tRNA/RS 对可以进化为在各种蛋白质中响应琥珀酰基终止密码子 UAG 掺入不同的 Uaas,而这些蛋白质存在于秀丽隐杆线虫中。为了准确报告在蠕虫中 Uaa 的掺入,我们发现将含有 UAG 的报告基因整合到基因组中而非通过染色体外的数组表达是至关重要的,因为从后者中表达可能会导致报告基因的激活,而无需琥珀酰基抑制 tRNA/RS。在二肽中合成 Uaa 会驱动 Uaa 的摄取和生物利用度。Uaa 的掺入具有与内源性琥珀酰基抑制相似的剂量、时间、tRNA 拷贝和温度依赖性。通过敲低 smg-1 来破坏无意义介导的 mRNA 降解途径,可提高 Uaa 的掺入效率。我们已经生成了能够在遗传上编码 Uaas 的稳定转基因蠕虫,从而使 Uaa 的利用能够在后生动物体内解决复杂的生物学问题。我们预计我们的策略将普遍适用于其他多细胞生物。