Institute of Environmental Sciences (CML), Department of Industrial Ecology, Leiden University , Einsteinweg 2, 2333 CC Leiden, The Netherlands.
EarthShift Global LLC , 37 Route 236, Suite 112, Kittery, Maine 03904, United States.
Environ Sci Technol. 2018 Feb 20;52(4):2152-2161. doi: 10.1021/acs.est.7b06365. Epub 2018 Feb 6.
Interpretation of comparative Life Cycle Assessment (LCA) results can be challenging in the presence of uncertainty. To aid in interpreting such results under the goal of any comparative LCA, we aim to provide guidance to practitioners by gaining insights into uncertainty-statistics methods (USMs). We review five USMs-discernibility analysis, impact category relevance, overlap area of probability distributions, null hypothesis significance testing (NHST), and modified NHST-and provide a common notation, terminology, and calculation platform. We further cross-compare all USMs by applying them to a case study on electric cars. USMs belong to a confirmatory or an exploratory statistics' branch, each serving different purposes to practitioners. Results highlight that common uncertainties and the magnitude of differences per impact are key in offering reliable insights. Common uncertainties are particularly important as disregarding them can lead to incorrect recommendations. On the basis of these considerations, we recommend the modified NHST as a confirmatory USM. We also recommend discernibility analysis as an exploratory USM along with recommendations for its improvement, as it disregards the magnitude of the differences. While further research is necessary to support our conclusions, the results and supporting material provided can help LCA practitioners in delivering a more robust basis for decision-making.
在存在不确定性的情况下,对比较生命周期评估(LCA)结果的解释可能具有挑战性。为了在任何比较 LCA 的目标下帮助解释这些结果,我们旨在通过深入了解不确定性统计方法(USM)为从业者提供指导。我们回顾了五种 USM——可辨别性分析、影响类别相关性、概率分布重叠区域、零假设显著性检验(NHST)和改进的 NHST——并提供了通用符号、术语和计算平台。我们进一步通过将所有 USM 应用于电动汽车案例研究来进行交叉比较。USM 属于证实性或探索性统计的分支,每个分支都为从业者提供不同的目的。结果强调,常见的不确定性和每个影响的差异幅度是提供可靠见解的关键。常见的不确定性尤为重要,因为忽略它们可能会导致错误的建议。基于这些考虑,我们建议将改进的 NHST 作为确认性 USM。我们还建议将可辨别性分析作为探索性 USM,并提出改进建议,因为它忽略了差异的幅度。虽然需要进一步的研究来支持我们的结论,但提供的结果和支持材料可以帮助 LCA 从业者为决策提供更稳健的基础。