Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
Breast Cancer Res. 2018 Feb 6;20(1):12. doi: 10.1186/s13058-018-0939-5.
BACKGROUND: Breast cancer subtype can be classified using standard clinical markers (estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2)), supplemented with additional markers. However, automated biomarker scoring and classification schemes have not been standardized. The aim of this study was to optimize tumor classification using automated methods in order to describe subtype frequency in the African American Breast Cancer Epidemiology and Risk (AMBER) consortium. METHODS: Using immunohistochemistry (IHC), we quantified the expression of ER, PR, HER2, the proliferation marker Ki67, and two basal-like biomarkers, epidermal growth factor receptor (EGFR) and cytokeratin (CK)5/6, in 1381 invasive breast tumors from African American women. RNA-based (prediction analysis of microarray 50 (PAM50)) subtype, available for 574 (42%) cases, was used to optimize classification. Subtype frequency was calculated, and associations between subtype and tumor characteristics were estimated using logistic regression. RESULTS: Relative to ER, PR and HER2 from medical records, central IHC staining and the addition of Ki67 or combined tumor grade improved accuracy for classifying PAM50-based luminal subtypes. Few triple negative cases (< 2%) lacked EGFR and CK5/6 expression, thereby providing little improvement in accuracy for identifying basal-like tumors. Relative to luminal A subtype, all other subtypes had higher combined grade and were larger, and ER-/HER2+ tumors were more often lymph node positive and late stage tumors. The frequency of basal-like tumors was 31%, exceeded only slightly by luminal A tumors (37%). CONCLUSIONS: Our findings indicate that automated IHC-based classification produces tumor subtype frequencies approximating those from PAM50-based classification and highlight high frequency of basal-like and low frequency of luminal A breast cancer in a large study of African American women.
背景:乳腺癌亚型可以使用标准的临床标志物(雌激素受体 (ER)、孕激素受体 (PR) 和人表皮生长因子受体 2 (HER2))进行分类,并辅以其他标志物。然而,自动化生物标志物评分和分类方案尚未标准化。本研究旨在使用自动化方法优化肿瘤分类,以描述非洲裔美国乳腺癌流行病学和风险 (AMBER) 联盟中的亚型频率。
方法:我们使用免疫组织化学 (IHC) 定量测定了 1381 例非洲裔美国女性浸润性乳腺癌肿瘤中 ER、PR、HER2、增殖标志物 Ki67 以及两种基底样生物标志物表皮生长因子受体 (EGFR) 和细胞角蛋白 (CK)5/6 的表达。对于 574 例(42%)病例,可使用基于 RNA 的(微阵列 50 预测分析 (PAM50))亚型进行分类优化。计算了亚型频率,并使用逻辑回归估计了亚型与肿瘤特征之间的关联。
结果:与病历中的 ER、PR 和 HER2、中心 IHC 染色以及 Ki67 或联合肿瘤分级的添加相比,分类 PAM50 基于的 luminal 亚型的准确性更高。很少有三阴性病例(<2%)缺乏 EGFR 和 CK5/6 表达,因此对识别基底样肿瘤的准确性提高不大。与 luminal A 亚型相比,所有其他亚型的联合分级更高,肿瘤更大,而 ER-/HER2+ 肿瘤淋巴结阳性和晚期肿瘤的比例更高。基底样肿瘤的频率为 31%,略高于 luminal A 肿瘤(37%)。
结论:我们的研究结果表明,基于自动化 IHC 的分类产生的肿瘤亚型频率与基于 PAM50 的分类相似,并强调了在一项对大量非洲裔美国女性进行的研究中基底样和 luminal A 乳腺癌的高频率。
Breast Cancer Res. 2018-2-6
BMC Cancer. 2018-3-9
BMC Med Genomics. 2012-10-4
Cancer Epidemiol Biomarkers Prev. 2021-1
Breast Cancer Res Treat. 2023-5
Breast Cancer Res Treat. 2016-2
Cancer Epidemiol Biomarkers Prev. 2014-5
Front Oncol. 2024-10-25
Cancer Epidemiol Biomarkers Prev. 2022-12-5
Ann Appl Stat. 2021-12
Breast Cancer Res. 2016-6-28
Cancer Epidemiol Biomarkers Prev. 2016-3
J Natl Cancer Inst. 2015-6-17
Appl Immunohistochem Mol Morphol. 2016-3
J Natl Cancer Inst. 2014-9-15