文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

乳腺癌组织学图像与基因组协变量的联合及个体分析

JOINT AND INDIVIDUAL ANALYSIS OF BREAST CANCER HISTOLOGIC IMAGES AND GENOMIC COVARIATES.

作者信息

Carmichael Iain, Calhoun Benjamin C, Hoadley Katherine A, Troester Melissa A, Geradts Joseph, Couture Heather D, Olsson Linnea, Perou Charles M, Niethammer Marc, Hannig Jan, Marron J S

机构信息

University of Washington.

University of North Carolina at Chapel Hill.

出版信息

Ann Appl Stat. 2021 Dec;15(4):1697-1722. doi: 10.1214/20-aoas1433. Epub 2021 Dec 21.


DOI:10.1214/20-aoas1433
PMID:35432688
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9007558/
Abstract

The two main approaches in the study of breast cancer are histopathology (analyzing visual characteristics of tumors) and genomics. While both histopathology and genomics are fundamental to cancer research, the connections between these fields have been relatively superficial. We bridge this gap by investigating the Carolina Breast Cancer Study through the development of an integrative, exploratory analysis framework. Our analysis gives insights - some known, some novel - that are engaging to both pathologists and geneticists. Our analysis framework is based on Angle-based Joint and Individual Variation Explained (AJIVE) for statistical data integration and exploits Convolutional Neural Networks (CNNs) as a powerful, automatic method for image feature extraction. CNNs raise interpretability issues that we address by developing novel methods to explore visual modes of variation captured by statistical algorithms (e.g. PCA or AJIVE) applied to CNN features.

摘要

乳腺癌研究中的两种主要方法是组织病理学(分析肿瘤的视觉特征)和基因组学。虽然组织病理学和基因组学对癌症研究都至关重要,但这些领域之间的联系相对较为表面。我们通过开发一个综合的探索性分析框架来研究卡罗来纳乳腺癌研究,从而弥合这一差距。我们的分析提供了一些见解——有些是已知的,有些是新颖的——这些见解对病理学家和遗传学家都很有吸引力。我们的分析框架基于用于统计数据整合的基于角度的联合和个体变异解释(AJIVE),并利用卷积神经网络(CNN)作为一种强大的自动图像特征提取方法。CNN引发了可解释性问题,我们通过开发新方法来探索应用于CNN特征的统计算法(如主成分分析或AJIVE)所捕获的视觉变异模式来解决这些问题。

相似文献

[1]
JOINT AND INDIVIDUAL ANALYSIS OF BREAST CANCER HISTOLOGIC IMAGES AND GENOMIC COVARIATES.

Ann Appl Stat. 2021-12

[2]
Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features.

BMC Bioinformatics. 2017-5-26

[3]
Reduced Deep Convolutional Activation Features (R-DeCAF) in Histopathology Images to Improve the Classification Performance for Breast Cancer Diagnosis.

J Digit Imaging. 2023-12

[4]
An interpretable decision-support model for breast cancer diagnosis using histopathology images.

J Pathol Inform. 2023-6-13

[5]
Enhancing Interpretability in Medical Image Classification by Integrating Formal Concept Analysis with Convolutional Neural Networks.

Biomimetics (Basel). 2024-7-10

[6]
Deep learning approaches for breast cancer detection in histopathology images: A review.

Cancer Biomark. 2024

[7]
Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI.

Med Image Anal. 2017-8-24

[8]
A novel embedded kernel CNN-PCFF algorithm for breast cancer pathological image classification.

Sci Rep. 2024-10-10

[9]
Explaining decisions of graph convolutional neural networks: patient-specific molecular subnetworks responsible for metastasis prediction in breast cancer.

Genome Med. 2021-3-11

[10]
Integrating Patient Data Into Skin Cancer Classification Using Convolutional Neural Networks: Systematic Review.

J Med Internet Res. 2021-7-2

引用本文的文献

[1]
Image analysis-based identification of high risk ER-positive, HER2-negative breast cancers.

Breast Cancer Res. 2024-12-4

[2]
Deep Learning Techniques with Genomic Data in Cancer Prognosis: A Comprehensive Review of the 2021-2023 Literature.

Biology (Basel). 2023-6-21

[3]
Similarity-driven multi-view embeddings from high-dimensional biomedical data.

Nat Comput Sci. 2021-2

[4]
Pathomic Fusion: An Integrated Framework for Fusing Histopathology and Genomic Features for Cancer Diagnosis and Prognosis.

IEEE Trans Med Imaging. 2022-4

本文引用的文献

[1]
Joint analysis of expression levels and histological images identifies genes associated with tissue morphology.

Nat Commun. 2021-3-11

[2]
Pathomic Fusion: An Integrated Framework for Fusing Histopathology and Genomic Features for Cancer Diagnosis and Prognosis.

IEEE Trans Med Imaging. 2022-4

[3]
Causability and explainability of artificial intelligence in medicine.

Wiley Interdiscip Rev Data Min Knowl Discov. 2019

[4]
An augmented reality microscope with real-time artificial intelligence integration for cancer diagnosis.

Nat Med. 2019-8-12

[5]
Deep Adversarial Training for Multi-Organ Nuclei Segmentation in Histopathology Images.

IEEE Trans Med Imaging. 2020-11

[6]
Deep Learning for Semantic Segmentation vs. Classification in Computational Pathology: Application to Mitosis Analysis in Breast Cancer Grading.

Front Bioeng Biotechnol. 2019-6-21

[7]
Structural learning and integrative decomposition of multi-view data.

Biometrics. 2019-12

[8]
Breast Cancer Tumor Stroma: Cellular Components, Phenotypic Heterogeneity, Intercellular Communication, Prognostic Implications and Therapeutic Opportunities.

Cancers (Basel). 2019-5-13

[9]
Introduction to Digital Image Analysis in Whole-slide Imaging: A White Paper from the Digital Pathology Association.

J Pathol Inform. 2019-3-8

[10]
Predicting breast tumor proliferation from whole-slide images: The TUPAC16 challenge.

Med Image Anal. 2019-2-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索