Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA.
J Mol Biol. 2018 Mar 16;430(6):881-889. doi: 10.1016/j.jmb.2018.01.019. Epub 2018 Feb 2.
Tyrosine kinases are enzymes playing a critical role in cellular signaling. Molecular dynamics umbrella sampling potential of mean force computations are used to quantify the impact of activating and inactivating mutations of c-Src kinase. The potential of mean force computations predict that a specific double mutant can stabilize c-Src kinase into an active-like conformation while disabling the binding of ATP in the catalytic active site. The active-like conformational equilibrium of this catalytically dead kinase is affected by a hydrophobic unit that connects to the hydrophobic spine network via the C-helix. The αC-helix plays a crucial role in integrating the hydrophobic residues, making it a hub for allosteric regulation of kinase activity and the active conformation. The computational free-energy landscapes reported here illustrate novel design principles focusing on the important role of the hydrophobic spines. The relative stability of the spines could be exploited in future efforts to artificially engineer active-like but catalytically dead forms of protein kinases.
酪氨酸激酶是在细胞信号转导中发挥关键作用的酶。分子动力学伞状采样平均力势计算被用来定量激活和失活 c-Src 激酶突变的影响。平均力势计算预测,特定的双突变体可以将 c-Src 激酶稳定到类似于活性的构象,同时阻止 ATP 在催化活性位点的结合。这种催化失活激酶的类似于活性的构象平衡受到一个连接到疏水性脊柱网络的疏水性单元的影响,该单元通过 C-螺旋连接。αC-螺旋在整合疏水性残基方面起着至关重要的作用,使其成为激酶活性和活性构象的变构调节的中心。这里报道的计算自由能景观说明了新的设计原则,重点关注疏水性脊柱的重要作用。脊柱的相对稳定性可以在未来的努力中被利用,以人工设计类似于活性但催化失活的蛋白激酶形式。