Suppr超能文献

激酶-肽复合物的基于动态变构的分子作用机制。

Dynamic allostery-based molecular workings of kinase:peptide complexes.

机构信息

Department of Pharmacology, University of California San Diego, La Jolla, CA 92093;

Department of Pharmacology, University of California San Diego, La Jolla, CA 92093.

出版信息

Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):15052-15061. doi: 10.1073/pnas.1900163116. Epub 2019 Jul 8.

Abstract

A dense interplay between structure and dynamics underlies the working of proteins, especially enzymes. Protein kinases are molecular switches that are optimized for their regulation rather than catalytic turnover rates. Using long-simulations dynamic allostery analysis, this study describes an exploration of the dynamic kinase:peptide complex. We have used protein kinase A (PKA) as a model system as a generic prototype of the protein kinase superfamily of signaling enzymes. Our results explain the role of dynamic coupling of active-site residues that must work in coherence to provide for a successful activation or inhibition response from the kinase. Amino acid networks-based community analysis allows us to ponder the conformational entropy of the kinase:nucleotide:peptide ternary complex. We use a combination of 7 peptides that include 3 types of PKA-binding partners: Substrates, products, and inhibitors. The substrate peptides provide for dynamic insights into the enzyme:substrate complex, while the product phospho-peptide allows for accessing modes of enzyme:product release. Mapping of allosteric communities onto the PKA structure allows us to locate the more unvarying and flexible dynamic regions of the kinase. These distributions, when correlated with the structural elements of the kinase core, allow for a detailed exploration of key dynamics-based signatures that could affect peptide recognition and binding at the kinase active site. These studies provide a unique dynamic allostery-based perspective to kinase:peptide complexes that have previously been explored only in a structural or thermodynamic context.

摘要

结构与动力学的紧密相互作用是蛋白质(尤其是酶)发挥作用的基础。蛋白激酶是分子开关,其优化的是调节作用而不是催化周转率。本研究采用长时模拟动态变构分析,描述了对激酶-肽复合物的探索。我们使用蛋白激酶 A (PKA) 作为模型系统,作为信号酶蛋白激酶超家族的通用原型。我们的结果解释了活性位点残基动态偶联的作用,这些残基必须协调工作,才能为激酶提供成功的激活或抑制反应。基于氨基酸网络的社区分析使我们能够思考激酶-核苷酸-肽三元复合物的构象熵。我们使用了 7 种肽的组合,其中包括 3 种 PKA 结合伙伴:底物、产物和抑制剂。底物肽为酶-底物复合物提供了动态见解,而磷酸化产物肽则允许访问酶-产物释放的模式。变构社区映射到 PKA 结构上,使我们能够定位激酶中更不变和灵活的动态区域。当这些分布与激酶核心的结构元素相关联时,就可以详细探索可能影响激酶活性位点处肽识别和结合的关键基于动力学的特征。这些研究为激酶-肽复合物提供了一种独特的基于动态变构的视角,这些复合物以前仅在结构或热力学背景下进行过探索。

相似文献

1
Dynamic allostery-based molecular workings of kinase:peptide complexes.
Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):15052-15061. doi: 10.1073/pnas.1900163116. Epub 2019 Jul 8.
4
Mutation of a kinase allosteric node uncouples dynamics linked to phosphotransfer.
Proc Natl Acad Sci U S A. 2017 Feb 7;114(6):E931-E940. doi: 10.1073/pnas.1620667114. Epub 2017 Jan 23.
5
Low- and room-temperature X-ray structures of protein kinase A ternary complexes shed new light on its activity.
Acta Crystallogr D Biol Crystallogr. 2012 Jul;68(Pt 7):854-60. doi: 10.1107/S0907444912014886. Epub 2012 Jun 15.
6
Dynamic architecture of a protein kinase.
Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):E4623-31. doi: 10.1073/pnas.1418402111. Epub 2014 Oct 15.
7
Dynamics connect substrate recognition to catalysis in protein kinase A.
Nat Chem Biol. 2010 Nov;6(11):821-8. doi: 10.1038/nchembio.452. Epub 2010 Oct 3.
8
Mechanism-based design of a protein kinase inhibitor.
Nat Struct Biol. 2001 Jan;8(1):37-41. doi: 10.1038/83028.
9
Unidirectional allostery in the regulatory subunit RIα facilitates efficient deactivation of protein kinase A.
Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):E6776-E6785. doi: 10.1073/pnas.1610142113. Epub 2016 Oct 17.
10
Switching Aurora-A kinase on and off at an allosteric site.
FEBS J. 2017 Sep;284(18):2947-2954. doi: 10.1111/febs.14069. Epub 2017 Apr 18.

引用本文的文献

1
Distinct Allosteric Networks in CDK4 and CDK6 in the Cell Cycle and in Drug Resistance.
J Mol Biol. 2025 Mar 31:169121. doi: 10.1016/j.jmb.2025.169121.
2
Distinct allosteric networks in CDK4 and CDK6 in the cell cycle and in drug resistance.
bioRxiv. 2025 Mar 6:2025.02.28.640857. doi: 10.1101/2025.02.28.640857.
3
Deciphering the structural consequences of R83 and R152 methylation on DNA polymerase β using molecular modeling.
PLoS One. 2025 Mar 12;20(3):e0318614. doi: 10.1371/journal.pone.0318614. eCollection 2025.
4
Toward the Prediction of Binding Events in Very Flexible, Allosteric, Multidomain Proteins.
J Chem Inf Model. 2025 Feb 24;65(4):2052-2065. doi: 10.1021/acs.jcim.4c01810. Epub 2025 Feb 5.
5
Role of the αC-β4 loop in protein kinase structure and dynamics.
Elife. 2024 Dec 4;12:RP91980. doi: 10.7554/eLife.91980.
6
Predicting binding events in very flexible, allosteric, multi-domain proteins.
bioRxiv. 2024 Nov 10:2024.06.02.597018. doi: 10.1101/2024.06.02.597018.
7
CDK2 and CDK4: Cell Cycle Functions Evolve Distinct, Catalysis-Competent Conformations, Offering Drug Targets.
JACS Au. 2024 May 14;4(5):1911-1927. doi: 10.1021/jacsau.4c00138. eCollection 2024 May 27.
8
Allostery in Protein Tyrosine Phosphatases is Enabled by Divergent Dynamics.
J Chem Inf Model. 2024 Feb 26;64(4):1331-1346. doi: 10.1021/acs.jcim.3c01615. Epub 2024 Feb 12.
9
Crystal Structures Reveal Hidden Domain Mechanics in Protein Kinase A (PKA).
Biology (Basel). 2023 Oct 26;12(11):1370. doi: 10.3390/biology12111370.
10
Protein Kinase Structure and Dynamics: Role of the αC-β4 Loop.
bioRxiv. 2023 Oct 16:2023.08.31.555822. doi: 10.1101/2023.08.31.555822.

本文引用的文献

1
Tuning the "violin" of protein kinases: The role of dynamics-based allostery.
IUBMB Life. 2019 Jun;71(6):685-696. doi: 10.1002/iub.2057. Epub 2019 May 7.
3
How large B-factors can be in protein crystal structures.
BMC Bioinformatics. 2018 Feb 23;19(1):61. doi: 10.1186/s12859-018-2083-8.
4
A Catalytically Disabled Double Mutant of Src Tyrosine Kinase Can Be Stabilized into an Active-Like Conformation.
J Mol Biol. 2018 Mar 16;430(6):881-889. doi: 10.1016/j.jmb.2018.01.019. Epub 2018 Feb 2.
5
Phosphorylation of protein kinase A (PKA) regulatory subunit RIα by protein kinase G (PKG) primes PKA for catalytic activity in cells.
J Biol Chem. 2018 Mar 23;293(12):4411-4421. doi: 10.1074/jbc.M117.809988. Epub 2018 Jan 29.
6
Consistent Principal Component Modes from Molecular Dynamics Simulations of Proteins.
J Chem Inf Model. 2017 Apr 24;57(4):826-834. doi: 10.1021/acs.jcim.6b00646. Epub 2017 Mar 29.
7
On the indirect relationship between protein dynamics and enzyme activity.
Prog Biophys Mol Biol. 2017 May;125:52-60. doi: 10.1016/j.pbiomolbio.2017.02.001. Epub 2017 Feb 3.
8
Mutation of a kinase allosteric node uncouples dynamics linked to phosphotransfer.
Proc Natl Acad Sci U S A. 2017 Feb 7;114(6):E931-E940. doi: 10.1073/pnas.1620667114. Epub 2017 Jan 23.
9
Decoding the Interactions Regulating the Active State Mechanics of Eukaryotic Protein Kinases.
PLoS Biol. 2016 Nov 30;14(11):e2000127. doi: 10.1371/journal.pbio.2000127. eCollection 2016 Nov.
10
Dynamic Allostery Mediated by a Conserved Tryptophan in the Tec Family Kinases.
PLoS Comput Biol. 2016 Mar 24;12(3):e1004826. doi: 10.1371/journal.pcbi.1004826. eCollection 2016 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验