Department of Pharmacology, University of California San Diego, La Jolla, CA 92093;
Department of Pharmacology, University of California San Diego, La Jolla, CA 92093.
Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):15052-15061. doi: 10.1073/pnas.1900163116. Epub 2019 Jul 8.
A dense interplay between structure and dynamics underlies the working of proteins, especially enzymes. Protein kinases are molecular switches that are optimized for their regulation rather than catalytic turnover rates. Using long-simulations dynamic allostery analysis, this study describes an exploration of the dynamic kinase:peptide complex. We have used protein kinase A (PKA) as a model system as a generic prototype of the protein kinase superfamily of signaling enzymes. Our results explain the role of dynamic coupling of active-site residues that must work in coherence to provide for a successful activation or inhibition response from the kinase. Amino acid networks-based community analysis allows us to ponder the conformational entropy of the kinase:nucleotide:peptide ternary complex. We use a combination of 7 peptides that include 3 types of PKA-binding partners: Substrates, products, and inhibitors. The substrate peptides provide for dynamic insights into the enzyme:substrate complex, while the product phospho-peptide allows for accessing modes of enzyme:product release. Mapping of allosteric communities onto the PKA structure allows us to locate the more unvarying and flexible dynamic regions of the kinase. These distributions, when correlated with the structural elements of the kinase core, allow for a detailed exploration of key dynamics-based signatures that could affect peptide recognition and binding at the kinase active site. These studies provide a unique dynamic allostery-based perspective to kinase:peptide complexes that have previously been explored only in a structural or thermodynamic context.
结构与动力学的紧密相互作用是蛋白质(尤其是酶)发挥作用的基础。蛋白激酶是分子开关,其优化的是调节作用而不是催化周转率。本研究采用长时模拟动态变构分析,描述了对激酶-肽复合物的探索。我们使用蛋白激酶 A (PKA) 作为模型系统,作为信号酶蛋白激酶超家族的通用原型。我们的结果解释了活性位点残基动态偶联的作用,这些残基必须协调工作,才能为激酶提供成功的激活或抑制反应。基于氨基酸网络的社区分析使我们能够思考激酶-核苷酸-肽三元复合物的构象熵。我们使用了 7 种肽的组合,其中包括 3 种 PKA 结合伙伴:底物、产物和抑制剂。底物肽为酶-底物复合物提供了动态见解,而磷酸化产物肽则允许访问酶-产物释放的模式。变构社区映射到 PKA 结构上,使我们能够定位激酶中更不变和灵活的动态区域。当这些分布与激酶核心的结构元素相关联时,就可以详细探索可能影响激酶活性位点处肽识别和结合的关键基于动力学的特征。这些研究为激酶-肽复合物提供了一种独特的基于动态变构的视角,这些复合物以前仅在结构或热力学背景下进行过探索。