Suppr超能文献

通过表面缺陷增强磷烯隧道场效应晶体管中的隧穿电流。

Enhancement of tunneling current in phosphorene tunnel field effect transistors by surface defects.

作者信息

Lu Juan, Fan Zhi-Qiang, Gong Jian, Chen Jie-Zhi, ManduLa Huhe, Zhang Yan-Yang, Yang Shen-Yuan, Jiang Xiang-Wei

机构信息

School of Physics and Technology, Inner Mongolia University, Hohhot 010021, P. R. China.

出版信息

Phys Chem Chem Phys. 2018 Feb 21;20(8):5699-5707. doi: 10.1039/c7cp08678d.

Abstract

The effects of the staggered double vacancies, hydrogen (H), 3d transition metals, for example cobalt, and semiconductor covalent atoms, for example, germanium, nitrogen, phosphorus (P) and silicon adsorption on the transport properties of monolayer phosphorene were studied using density functional theory and non-equilibrium Green's function formalism. It was observed that the performance of the phosphorene tunnel field effect transistors (TFETs) with an 8.8 nm scaling channel length could be improved most effectively, if the adatoms or vacancies were introduced at the source channel interface. For H and P doped devices, the upper limit of on-state currents of phosphorene TFETs were able to be quickly increased to 2465 μA μm and 1652 μA μm, respectively, which not only outperformed the pristine sample, but also met the requirements for high performance logic applications for the next decade in the International Technology Roadmap for Semiconductors (ITRS). It was proved that the defect-induced band gap states make the effective tunneling path between the conduction band (CB) and valence band (VB) much shorter, so that the carriers can be injected easily from the left electrode, then transfer to the channel. In this regard, the tunneling properties of phosphorene TFETs can be manipulated using surface defects. In addition, the effects of spin polarization on the transport properties of doped phosphorene TFETs were also rigorously considered, H and P doped TFETs could achieve a high ON current of 1795 μA μm and 1368 μA μm, respectively, which is closer to realistic nanodevices.

摘要

利用密度泛函理论和非平衡格林函数形式,研究了交错双空位、氢(H)、3d 过渡金属(如钴)以及半导体共价原子(如锗、氮、磷(P)和硅)吸附对单层磷烯输运性质的影响。研究发现,如果在源极沟道界面引入吸附原子或空位,8.8 nm 缩放沟道长度的磷烯隧道场效应晶体管(TFET)的性能能得到最有效的改善。对于 H 和 P 掺杂的器件,磷烯 TFET 的导通态电流上限能够分别快速提高到 2465 μA/μm 和 1652 μA/μm,这不仅优于原始样品,还满足了国际半导体技术路线图(ITRS)中未来十年高性能逻辑应用的要求。结果表明,缺陷诱导的带隙态使导带(CB)和价带(VB)之间的有效隧穿路径大大缩短,从而使载流子能够轻松地从左电极注入,然后转移到沟道。在这方面,可以利用表面缺陷来操控磷烯 TFET 的隧穿特性。此外,还严格考虑了自旋极化对掺杂磷烯 TFET 输运性质的影响,H 和 P 掺杂的 TFET 分别可以实现 1795 μA/μm 和 1368 μA/μm 的高导通电流,这更接近实际的纳米器件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验