Weill Cornell Medical College, New York, NY, United States.
Weill Cornell Medical College, New York, NY, United States.
Prog Mol Biol Transl Sci. 2018;154:71-104. doi: 10.1016/bs.pmbts.2017.11.012.
NAD acts as a crucial regulator of cell physiology and as an integral participant in cellular metabolism. By virtue of a variety of signaling activities this central metabolite can exert profound effects on organism health status. Thus, while it serves as a well-known metabolic cofactor functioning as a redox-active substrate, it can also function as a substrate for signaling enzymes, such as sirtuins, poly (ADP-ribosyl) polymerases, mono (ADP-ribosyl) transferases, and CD38. Sirtuins function as NAD-dependent protein deacetylases (deacylases) and catalyze the reaction of NAD with acyllysine groups to remove the acyl modification from substrate proteins. This deacetylation provides a regulatory function and integrates cellular NAD metabolism into a large spectrum of cellular processes and outcomes, such as cell metabolism, cell survival, cell cycle, apoptosis, DNA repair, mitochondrial homeostasis and mitochondrial biogenesis, and even lifespan. Increased attention to how regulated and pharmacologic changes in NAD concentrations can impact sirtuin activities has motivated openings of new areas of research, including investigations of how NAD levels are regulated at the subcellular level, and searches for more potent NAD precursors typified by nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN). This review describes current results and thinking of how NAD metabolic pathways regulate sirtuin activities and how regulated NAD levels can impact cell physiology. In addition, NAD precursors are discussed, with attention to how these might be harnessed to generate novel therapeutic options to treat the diseases of aging.
NAD 作为细胞生理学的关键调节剂和细胞代谢的组成部分参与其中。通过多种信号活动,这种中心代谢物可以对生物体的健康状况产生深远影响。因此,虽然它作为一种众所周知的代谢辅助因子,作为一种氧化还原活性底物发挥作用,但它也可以作为信号酶的底物,如沉默调节蛋白、多聚(ADP-核糖)聚合酶、单(ADP-核糖)转移酶和 CD38。沉默调节蛋白作为 NAD 依赖性蛋白去乙酰化酶(脱酰酶)发挥作用,催化 NAD 与酰基辅氨酸基团的反应,从而从底物蛋白中去除酰基修饰。这种脱乙酰作用提供了一种调节功能,并将细胞 NAD 代谢整合到广泛的细胞过程和结果中,如细胞代谢、细胞存活、细胞周期、细胞凋亡、DNA 修复、线粒体稳态和线粒体生物发生,甚至寿命。人们越来越关注调节 NAD 浓度和药物变化如何影响沉默调节蛋白的活性,这激发了新的研究领域的开拓,包括研究 NAD 水平如何在亚细胞水平上受到调节,以及寻找更有效的 NAD 前体,如烟酰胺核苷(NR)和烟酰胺单核苷酸(NMN)。本文综述了 NAD 代谢途径如何调节沉默调节蛋白活性以及调节 NAD 水平如何影响细胞生理学的最新研究结果和思路。此外,还讨论了 NAD 前体,特别关注如何利用这些前体来产生治疗衰老相关疾病的新的治疗选择。