Suppr超能文献

肽水平周转率测量可用于研究蛋白质构象动态。

Peptide Level Turnover Measurements Enable the Study of Proteoform Dynamics.

机构信息

From the ‡Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), 85354 Freising, Germany.

§German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.

出版信息

Mol Cell Proteomics. 2018 May;17(5):974-992. doi: 10.1074/mcp.RA118.000583. Epub 2018 Feb 2.

Abstract

The coordination of protein synthesis and degradation regulating protein abundance is a fundamental process in cellular homeostasis. Today, mass spectrometry-based technologies allow determination of endogenous protein turnover on a proteome-wide scale. However, standard dynamic SILAC (Stable Isotope Labeling in Cell Culture) approaches can suffer from missing data across pulse time-points limiting the accuracy of such analysis. This issue is of particular relevance when studying protein stability at the level of proteoforms because often only single peptides distinguish between different protein products of the same gene. To address this shortcoming, we evaluated the merits of combining dynamic SILAC and tandem mass tag (TMT)-labeling of ten pulse time-points in a single experiment. Although the comparison to the standard dynamic SILAC method showed a high concordance of protein turnover rates, the pulsed SILAC-TMT approach yielded more comprehensive data (6000 proteins on average) without missing values. Replicate analysis further established that the same reproducibility of turnover rate determination can be obtained for peptides and proteins facilitating proteoform resolved investigation of protein stability. We provide several examples of differentially turned over splice variants and show that post-translational modifications can affect cellular protein half-lives. For example, N-terminally processed peptides exhibited both faster and slower turnover behavior compared with other peptides of the same protein. In addition, the suspected proteolytic processing of the fusion protein FAU was substantiated by measuring vastly different stabilities of the cleavage products. Furthermore, differential peptide turnover suggested a previously unknown mechanism of activity regulation by post-translational destabilization of cathepsin D as well as the DNA helicase BLM. Finally, our comprehensive data set facilitated a detailed evaluation of the impact of protein properties and functions on protein stability in steady-state cells and uncovered that the high turnover of respiratory chain complex I proteins might be explained by oxidative stress.

摘要

蛋白质合成与降解的协调调节蛋白质丰度是细胞内稳态的基本过程。如今,基于质谱的技术允许在全蛋白质组范围内测定内源性蛋白质周转。然而,标准的动态 SILAC(稳定同位素标记细胞培养)方法可能会在脉冲时间点丢失数据,从而限制了这种分析的准确性。当在蛋白质水平上研究蛋白质稳定性时,这个问题尤为重要,因为通常只有单个肽区分同一基因的不同蛋白质产物。为了解决这个缺点,我们评估了在单个实验中结合动态 SILAC 和串联质量标签(TMT)标记十个脉冲时间点的优点。尽管与标准动态 SILAC 方法的比较显示蛋白质周转率具有高度一致性,但脉冲 SILAC-TMT 方法产生了更全面的数据(平均 6000 个蛋白质)而没有缺失值。重复分析进一步证实,对于肽和蛋白质,可以获得相同的周转率确定的重现性,从而促进蛋白质稳定性的蛋白质形式解析研究。我们提供了几个差异表达的剪接变体的例子,并表明翻译后修饰会影响细胞蛋白质半衰期。例如,与同一蛋白质的其他肽相比,N 端加工的肽表现出更快和更慢的周转率行为。此外,通过测量融合蛋白 FAU 的切割产物的差异稳定性,证实了对其潜在的蛋白水解加工的怀疑。此外,差异肽周转率表明,组织蛋白酶 D 的翻译后失稳以及 DNA 解旋酶 BLM 通过翻译后失稳来调节活性的先前未知机制。最后,我们的综合数据集促进了对稳定状态细胞中蛋白质性质和功能对蛋白质稳定性的影响的详细评估,并发现呼吸链复合物 I 蛋白质的高周转率可能可以用氧化应激来解释。

相似文献

1

引用本文的文献

7
Proteome-wide copy-number estimation from transcriptomics.基于转录组学的蛋白质组拷贝数估计。
Mol Syst Biol. 2024 Nov;20(11):1230-1256. doi: 10.1038/s44320-024-00064-3. Epub 2024 Sep 27.
10
Maximum entropy determination of mammalian proteome dynamics.哺乳动物蛋白质组动力学的最大熵测定
Proc Natl Acad Sci U S A. 2024 Apr 30;121(18):e2313107121. doi: 10.1073/pnas.2313107121. Epub 2024 Apr 23.

本文引用的文献

1
ProteomicsDB.蛋白质组数据库。
Nucleic Acids Res. 2018 Jan 4;46(D1):D1271-D1281. doi: 10.1093/nar/gkx1029.
2
A subcellular map of the human proteome.人类蛋白质组的亚细胞图谱。
Science. 2017 May 26;356(6340). doi: 10.1126/science.aal3321. Epub 2017 May 11.
3
Degrons in cancer.癌症中的降解结构域
Sci Signal. 2017 Mar 14;10(470):eaak9982. doi: 10.1126/scisignal.aak9982.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验