Salovska Barbora, Li Wenxue, Bernhardt Oliver M, Germain Pierre-Luc, Wang Qinyue, Gandhi Tejas, Reiter Lukas, Liu Yansheng
Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
Cancer Biology Institute, Yale University School of Medicine, West Haven, CT, USA.
Nat Commun. 2025 May 30;16(1):5034. doi: 10.1038/s41467-025-60319-x.
Quantifying protein turnover is fundamental to understanding cellular processes and advancing drug discovery. Multiplex-DIA mass spectrometry (MS), combined with dynamic SILAC labeling (pulse-SILAC, or pSILAC) reliably measures protein turnover and degradation kinetics. Previous multiplex-DIA-MS workflows have employed various strategies including leveraging the highest isotopic labeling channels to enhance the detection of isotopic signal pairs. Here we present a robust workflow that integrates a machine learning algorithm and channel-specific statistical filtering, enabling dynamic adaptation to channel ratio changes across multiplexed experiments and enhancing both coverage and accuracy of protein turnover profiling. We also introduce KdeggeR, a data analysis tool optimized for pSILAC-DIA experiments, which determines and visualizes peptide and protein degradation profiles. Our workflow is broadly applicable, as demonstrated on 2-channel and 3-channel DIA datasets and across two MS platforms. Applying this framework to an aneuploid cancer cell model before and after cisplatin resistance, we uncover strong proteome buffering of key protein complex subunits encoded by the aneuploid genome mediated by protein degradation. We identify resistance-associated turnover signatures, including mitochondrial metabolic adaptation via accelerated degradation of respiratory complexes I and IV. Our approach provides a powerful platform for high-throughput, quantitative analysis of proteome dynamics and stability in health and disease.
量化蛋白质周转率对于理解细胞过程和推进药物发现至关重要。多重数据独立采集质谱法(Multiplex-DIA MS)与动态稳定同位素标记氨基酸细胞培养法(dynamic SILAC labeling,脉冲-SILAC,或pSILAC)相结合,能够可靠地测量蛋白质周转率和降解动力学。先前的多重DIA-MS工作流程采用了各种策略,包括利用最高同位素标记通道来增强同位素信号对的检测。在此,我们提出了一种强大的工作流程,该流程整合了机器学习算法和通道特异性统计过滤,能够动态适应多重实验中通道比率的变化,并提高蛋白质周转率分析的覆盖范围和准确性。我们还引入了KdeggeR,这是一种针对pSILAC-DIA实验优化的数据分析工具,可确定并可视化肽和蛋白质的降解图谱。我们的工作流程具有广泛的适用性,在2通道和3通道DIA数据集以及两个质谱平台上均得到了验证。将此框架应用于顺铂耐药前后的非整倍体癌细胞模型,我们发现由蛋白质降解介导的非整倍体基因组编码的关键蛋白质复合体亚基存在强大的蛋白质组缓冲作用。我们识别出与耐药相关的周转率特征,包括通过加速呼吸复合体I和IV的降解实现线粒体代谢适应。我们的方法为健康和疾病状态下蛋白质组动力学和稳定性的高通量定量分析提供了一个强大的平台。