From the NCI-Designated Cancer Center and.
Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037 and.
J Biol Chem. 2018 May 4;293(18):7058-7067. doi: 10.1074/jbc.RA117.001329. Epub 2018 Feb 6.
Inflammatory cell death, or pyroptosis, is triggered by pathogenic infections or events. It is executed by caspase-1 (in the canonical pyroptosis pathway) or caspase-11 (noncanonical pathway), each via production of a cell-lytic domain from the pyroptosis effector protein gasdermin D through specific and limited proteolysis. Pyroptosis is accompanied by the release of inflammatory mediators, including the proteolytically processed forms of interleukin-1β (IL-1β) and IL-18. Given the similar inflammatory outcomes of the canonical and noncanonical pyroptosis pathways, we hypothesized that caspase-1 and -11 should have very similar activities and substrate specificities. To test this hypothesis, we purified recombinant murine caspases and analyzed their primary specificities by massive hybrid combinatorial substrate library (HyCoSuL) screens. We correlated the substrate preferences of each caspase with their activities on the recombinant natural substrates IL-1β, IL-18, and gasdermin D. Although we identified highly selective and robust peptidyl substrates for caspase-1, we were unable to do so for caspase-11, because caspase-1 cleaved even the best caspase-11 substrates equally well. Caspase-1 rapidly processed pro-IL-1β and -18, but caspase-11 processed these two pro-ILs extremely poorly. However, both caspase-1 and -11 efficiently produced the cell-lytic domain from the gasdermin D precursor. We hypothesize that caspase-11 may have evolved a specific exosite to selectively engage pyroptosis without directly activating pro-IL-1β or -18. In summary, comparing the activities of caspase-1 and -11 in HyCoSuL screens and with three endogenous protein substrates, we conclude that caspase-11 has highly restricted substrate specificity, preferring gasdermin D over all other substrates examined.
炎症细胞死亡,又称细胞焦亡,是由病原体感染或其他相关事件引发的。这一过程由半胱氨酸天冬氨酸蛋白酶-1(在经典细胞焦亡途径中)或半胱氨酸天冬氨酸蛋白酶-11(非经典途径)执行,通过对半胱氨酸天冬氨酸蛋白酶激活的炎症小体效应蛋白 Gasdermin D 的特异性和有限性蛋白水解,分别产生细胞裂解结构域。细胞焦亡伴随着炎症介质的释放,包括白细胞介素-1β(IL-1β)和白细胞介素-18 的蛋白水解产物。鉴于经典和非经典细胞焦亡途径具有相似的炎症结局,我们假设半胱氨酸天冬氨酸蛋白酶-1和-11 应该具有非常相似的活性和底物特异性。为了验证这一假说,我们纯化了重组鼠源半胱氨酸天冬氨酸蛋白酶,并通过大规模混合组合底物文库(HyCoSuL)筛选分析其一级特异性。我们将每种半胱氨酸天冬氨酸蛋白酶的底物偏好与其对重组天然底物 IL-1β、IL-18 和 Gasdermin D 的活性相关联。虽然我们鉴定了高度特异且稳定的半胱氨酸天冬氨酸蛋白酶-1的肽类底物,但对半胱氨酸天冬氨酸蛋白酶-11却无法做到这一点,因为半胱氨酸天冬氨酸蛋白酶-1 对半胱氨酸天冬氨酸蛋白酶-11 的最佳底物的切割效率也很高。半胱氨酸天冬氨酸蛋白酶-1 能快速处理前体 IL-1β 和 -18,但半胱氨酸天冬氨酸蛋白酶-11 对这两种前体 IL 的处理效率极低。然而,半胱氨酸天冬氨酸蛋白酶-1 和 -11 都能有效地从前体 Gasdermin D 中产生细胞裂解结构域。我们假设半胱氨酸天冬氨酸蛋白酶-11 可能进化出了一个特定的变构位点,以选择性地参与细胞焦亡,而不是直接激活前体 IL-1β 或 -18。总之,通过比较半胱氨酸天冬氨酸蛋白酶-1 和 -11 在 HyCoSuL 筛选中的活性和三种内源性蛋白底物,我们得出结论,半胱氨酸天冬氨酸蛋白酶-11 具有高度受限的底物特异性,优先选择 Gasdermin D 而不是其他所有检测到的底物。