Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
Wroclaw University of Science and Technology, Wroclaw, Poland.
J Biol Chem. 2020 Aug 7;295(32):11292-11302. doi: 10.1074/jbc.RA120.014259. Epub 2020 Jun 18.
Pyroptosis is the caspase-dependent inflammatory cell death mechanism that underpins the innate immune response against pathogens and is dysregulated in inflammatory disorders. Pyroptosis occurs via two pathways: the canonical pathway, signaled by caspase-1, and the noncanonical pathway, regulated by mouse caspase-11 and human caspase-4/5. All inflammatory caspases activate the pyroptosis effector protein gasdermin D, but caspase-1 mostly activates the inflammatory cytokine precursors prointerleukin-18 and prointerleukin-1β (pro-IL18/pro-IL1β). Here, cleavage assays with recombinant proteins confirmed that caspase-11 prefers cleaving gasdermin D over the pro-ILs. However, we found that caspase-11 recognizes protein substrates through a mechanism that is different from that of most caspases. Results of kinetics analysis with synthetic fluorogenic peptides indicated that P1'-P4', the C-terminal gasdermin D region adjacent to the cleavage site, influences gasdermin D recognition by caspase-11. Furthermore, introducing the gasdermin D P1'-P4' region into pro-IL18 enhanced catalysis by caspase-11 to levels comparable with that of gasdermin D cleavage. Pro-IL1β cleavage was only moderately enhanced by similar substitutions. We conclude that caspase-11 specificity is mediated by the P1'-P4' region in its substrate gasdermin D, and similar experiments confirmed that the substrate specificities of the human orthologs of caspase-11, caspase-4 and caspase-5, are ruled by the same mechanism. We propose that P1'-P4'-based inhibitors could be exploited to specifically target inflammatory caspases.
细胞焦亡是一种依赖半胱天冬酶的炎症细胞死亡机制,它是固有免疫反应抵御病原体的基础,并且在炎症性疾病中失调。细胞焦亡有两种途径:经典途径,由半胱天冬酶-1 信号转导;和非经典途径,由鼠源半胱天冬酶-11 和人源半胱天冬酶-4/5 调控。所有炎症半胱天冬酶激活细胞焦亡效应蛋白gasdermin D,但半胱天冬酶-1 主要激活炎症细胞因子前体白细胞介素-18(pro-interleukin-18,pro-IL18)和白细胞介素-1β(pro-interleukin-1β,pro-IL1β)。本研究中,使用重组蛋白进行的酶切分析证实半胱天冬酶-11 更倾向于裂解 gasdermin D,而非 pro-ILs。然而,我们发现半胱天冬酶-11 通过一种与大多数半胱天冬酶不同的机制识别蛋白底物。用合成荧光肽进行的动力学分析结果表明,靠近裂解位点的 gasdermin D 的 C 末端区域 P1'-P4',影响半胱天冬酶-11 对半胱天冬酶-11 的识别。此外,将 gasdermin D 的 P1'-P4'区域引入 pro-IL18 中,增强了半胱天冬酶-11 的催化作用,使其与 gasdermin D 的裂解水平相当。类似的取代对半胱天冬酶-1 裂解 pro-IL1β 的促进作用则较为适度。我们的结论是,半胱天冬酶-11 的特异性是由其底物 gasdermin D 中的 P1'-P4'区域介导的,类似的实验证实了半胱天冬酶-11 的人源同源物 caspase-4 和 caspase-5 的底物特异性也受相同机制调控。我们提出,基于 P1'-P4'的抑制剂可以被开发用于特异性靶向炎症半胱天冬酶。