Suppr超能文献

通过尖峰时间可塑性训练和自发强化神经元集合。

Training and Spontaneous Reinforcement of Neuronal Assemblies by Spike Timing Plasticity.

机构信息

Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.

Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA.

出版信息

Cereb Cortex. 2019 Mar 1;29(3):937-951. doi: 10.1093/cercor/bhy001.

Abstract

The synaptic connectivity of cortex is plastic, with experience shaping the ongoing interactions between neurons. Theoretical studies of spike timing-dependent plasticity (STDP) have focused on either just pairs of neurons or large-scale simulations. A simple analytic account for how fast spike time correlations affect both microscopic and macroscopic network structure is lacking. We develop a low-dimensional mean field theory for STDP in recurrent networks and show the emergence of assemblies of strongly coupled neurons with shared stimulus preferences. After training, this connectivity is actively reinforced by spike train correlations during the spontaneous dynamics. Furthermore, the stimulus coding by cell assemblies is actively maintained by these internally generated spiking correlations, suggesting a new role for noise correlations in neural coding. Assembly formation has often been associated with firing rate-based plasticity schemes; our theory provides an alternative and complementary framework, where fine temporal correlations and STDP form and actively maintain learned structure in cortical networks.

摘要

皮质的突触连接具有可塑性,经验会塑造神经元之间持续的相互作用。关于尖峰时间依赖性可塑性(STDP)的理论研究主要集中在神经元对或大规模模拟上。目前缺乏一种简单的分析方法来描述尖峰时间相关性如何快速影响微观和宏观网络结构。我们为递归网络中的 STDP 开发了一个低维平均场理论,并展示了具有共享刺激偏好的强耦合神经元集合的出现。在训练后,这种连接在自发动力学过程中会被尖峰时间相关性主动加强。此外,细胞集合的刺激编码会被这些内部产生的尖峰相关性主动维持,这表明噪声相关性在神经编码中具有新的作用。集合形成通常与基于发放率的可塑性方案有关;我们的理论提供了一个替代和互补的框架,其中精细的时间相关性和 STDP 形成并主动维持皮质网络中的学习结构。

相似文献

2
Autonomous emergence of connectivity assemblies via spike triplet interactions.通过尖峰三重相互作用自主出现连接组装体。
PLoS Comput Biol. 2020 May 8;16(5):e1007835. doi: 10.1371/journal.pcbi.1007835. eCollection 2020 May.

引用本文的文献

8
Modulation of the dynamical state in cortical network models.皮质网络模型中动态状态的调制。
Curr Opin Neurobiol. 2021 Oct;70:43-50. doi: 10.1016/j.conb.2021.07.004. Epub 2021 Aug 14.
9
Homeostatic mechanisms regulate distinct aspects of cortical circuit dynamics.体内平衡机制调节皮质电路动力学的不同方面。
Proc Natl Acad Sci U S A. 2020 Sep 29;117(39):24514-24525. doi: 10.1073/pnas.1918368117. Epub 2020 Sep 11.
10
Contextual Integration in Cortical and Convolutional Neural Networks.皮层神经网络和卷积神经网络中的上下文整合
Front Comput Neurosci. 2020 Apr 23;14:31. doi: 10.3389/fncom.2020.00031. eCollection 2020.

本文引用的文献

6
Shaping Neural Circuits by High Order Synaptic Interactions.通过高阶突触相互作用塑造神经回路
PLoS Comput Biol. 2016 Aug 12;12(8):e1005056. doi: 10.1371/journal.pcbi.1005056. eCollection 2016 Aug.
7
Imprinting and recalling cortical ensembles.印记与回忆皮层神经元集群
Science. 2016 Aug 12;353(6300):691-4. doi: 10.1126/science.aaf7560. Epub 2016 Aug 11.
10
Correlations and Neuronal Population Information.相关性与神经元群体信息。
Annu Rev Neurosci. 2016 Jul 8;39:237-56. doi: 10.1146/annurev-neuro-070815-013851. Epub 2016 Apr 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验