School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China.
Cell Death Dis. 2018 Feb 7;9(2):195. doi: 10.1038/s41419-018-0270-1.
Emerging evidence supports an important role for the ROS-sensitive TRPM2 channel in mediating age-related cognitive impairment in Alzheimer's disease (AD), particularly neurotoxicity resulting from generation of excessive neurotoxic Aβ peptides. Here we examined the elusive mechanisms by which Aβ activates the TRPM2 channel to induce neurotoxicity in mouse hippocampal neurons. Aβ-induced neurotoxicity was ablated by genetic knockout (TRPM2-KO) and attenuated by inhibition of the TRPM2 channel activity or activation through PARP-1. Aβ-induced neurotoxicity was also inhibited by treatment with TPEN used as a Zn-specific chelator. Cell imaging revealed that Aβ-induced lysosomal dysfunction, cytosolic Zn increase, mitochondrial Zn accumulation, loss of mitochondrial function, and mitochondrial generation of ROS. These effects were suppressed by TRPM2-KO, inhibition of TRPM2 or PARP-1, or treatment with TPEN. Bafilomycin-induced lysosomal dysfunction also resulted in TRPM2-dependent cytosolic Zn increase, mitochondrial Zn accumulation, and mitochondrial generation of ROS, supporting that lysosomal dysfunction and accompanying Zn release trigger mitochondrial Zn accumulation and generation of ROS. Aβ-induced effects on lysosomal and mitochondrial functions besides neurotoxicity were also suppressed by inhibition of PKC and NOX. Furthermore, Aβ-induced neurotoxicity was prevented by inhibition of MEK/ERK. Therefore, our study reveals multiple molecular mechanisms, including PKC/NOX-mediated generation of ROS, activation of MEK/ERK and PARP-1, lysosomal dysfunction and Zn release, mitochondrial Zn accumulation, loss of mitochondrial function, and mitochondrial generation of ROS, are critically engaged in forming a positive feedback loop that drives Aβ-induced activation of the TRPM2 channel and neurotoxicity in hippocampal neurons. These findings shed novel and mechanistic insights into AD pathogenesis.
新出现的证据支持 ROS 敏感的 TRPM2 通道在介导阿尔茨海默病(AD)相关认知障碍中起重要作用,特别是由产生过多神经毒性 Aβ肽引起的神经毒性。在这里,我们研究了 Aβ激活 TRPM2 通道诱导小鼠海马神经元神经毒性的难以捉摸的机制。通过基因敲除(TRPM2-KO)、抑制 TRPM2 通道活性或通过 PARP-1 激活,Aβ诱导的神经毒性被消除。用作为 Zn 特异性螯合剂的 TPEN 处理也抑制了 Aβ诱导的神经毒性。细胞成像显示 Aβ诱导的溶酶体功能障碍、细胞质 Zn 增加、线粒体 Zn 积累、线粒体功能丧失和线粒体产生 ROS。这些作用被 TRPM2-KO、TRPM2 或 PARP-1 的抑制或 TPEN 处理所抑制。Bafilomycin 诱导的溶酶体功能障碍也导致 TRPM2 依赖性细胞质 Zn 增加、线粒体 Zn 积累和线粒体产生 ROS,表明溶酶体功能障碍和伴随的 Zn 释放触发线粒体 Zn 积累和 ROS 的产生。抑制 PKC 和 NOX 也抑制了 Aβ对溶酶体和线粒体功能的除神经毒性以外的作用。此外,抑制 MEK/ERK 还可预防 Aβ诱导的神经毒性。因此,我们的研究揭示了多种分子机制,包括 PKC/NOX 介导的 ROS 产生、MEK/ERK 和 PARP-1 的激活、溶酶体功能障碍和 Zn 释放、线粒体 Zn 积累、线粒体功能丧失和线粒体产生 ROS,这些机制在形成正反馈环中起着关键作用,该反馈环驱动 Aβ诱导的 TRPM2 通道激活和海马神经元的神经毒性。这些发现为 AD 的发病机制提供了新的和机制性的见解。