Department of Chemistry Ångström Laboratory, Uppsala University Box 523, 75120 Uppsala, Sweden.
Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92023-0358, United States.
J Am Chem Soc. 2018 Feb 28;140(8):2985-2994. doi: 10.1021/jacs.7b13077. Epub 2018 Feb 20.
Metal-organic frameworks (MOFs) as electrocatalysis scaffolds are appealing due to the large concentration of catalytic units that can be assembled in three dimensions. To harness the full potential of these materials, charge transport to the redox catalysts within the MOF has to be ensured. Herein, we report the first electroactive MOF with the UiO/PIZOF topology (Zr(dcphOH-NDI)), i.e., one of the most widely used MOFs for catalyst incorporation, by using redox-active naphthalene diimide-based linkers (dcphOH-NDI). Hydroxyl groups were included on the dcphOH-NDI linker to facilitate proton transport through the material. Potentiometric titrations of Zr(dcphOH-NDI) show the proton-responsive behavior via the -OH groups on the linkers and the bridging Zr-μ-OH of the secondary building units with pK values of 6.10 and 3.45, respectively. When grown directly onto transparent conductive fluorine-doped tin oxide (FTO), 1 μm thin films of Zr(dcphOH-NDI)@FTO could be achieved. Zr(dcphOH-NDI)@FTO displays reversible electrochromic behavior as a result of the sequential one-electron reductions of the redox-active NDI linkers. Importantly, 97% of the NDI sites are electrochemically active at applied potentials. Charge propagation through the thin film proceeds through a linker-to-linker hopping mechanism that is charge-balanced by electrolyte transport, giving rise to cyclic voltammograms of the thin films that show characteristics of a diffusion-controlled process. The equivalent diffusion coefficient, D, that contains contributions from both phenomena was measured directly by UV/vis spectroelectrochemistry. Using KPF as electrolyte, D was determined to be D(KPF) = (5.4 ± 1.1) × 10 cm s, while an increase in countercation size to n-BuN led to a significant decrease of D by about 1 order of magnitude (D(n-BuNPF) = (4.0 ± 2.5) × 10 cm s).
金属-有机骨架(MOFs)作为电催化支架具有吸引力,因为可以在三维空间中组装大量的催化单元。为了充分发挥这些材料的潜力,必须确保电荷传输到 MOF 内的氧化还原催化剂。在此,我们报告了第一个具有 UiO/PIZOF 拓扑结构的电活性 MOF(Zr(dcphOH-NDI)),即最广泛用于催化剂掺入的 MOF 之一,使用氧化还原活性萘二酰亚胺基连接体(dcphOH-NDI)。在 dcphOH-NDI 连接体上引入了羟基,以促进质子通过材料的传输。Zr(dcphOH-NDI)的电位滴定显示出通过连接体上的-OH 基团和次级结构单元的桥接 Zr-μ-OH 的质子响应行为,其 pK 值分别为 6.10 和 3.45。当直接生长在透明导电氟掺杂氧化锡(FTO)上时,可以获得 1 μm 厚的 Zr(dcphOH-NDI)@FTO 薄膜。Zr(dcphOH-NDI)@FTO 表现出可逆电致变色行为,这是由于氧化还原活性 NDI 连接体的顺序单电子还原。重要的是,在施加的电位下,97%的 NDI 位点具有电化学活性。通过链接体到链接体的跳跃机制在电解质传输的电荷平衡下进行薄膜中的电荷传播,导致薄膜的循环伏安图显示出扩散控制过程的特征。通过紫外/可见光谱电化学直接测量包含两种现象贡献的等效扩散系数,D。使用 KPF 作为电解质,确定 D(KPF) = (5.4 ± 1.1) × 10 cm s,而反离子尺寸增加到 n-BuN 时,D 显著降低约 1 个数量级(D(n-BuNPF) = (4.0 ± 2.5) × 10 cm s)。