Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden.
Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden.
J Am Chem Soc. 2022 Apr 6;144(13):5910-5920. doi: 10.1021/jacs.1c13377. Epub 2022 Mar 24.
Electron transport through metal-organic frameworks by a hopping mechanism between discrete redox active sites is coupled to diffusion-migration of charge-balancing counter cations. Experimentally determined apparent diffusion coefficients, , that characterize this form of charge transport thus contain contributions from both processes. While this is well established for MOFs, microscopic descriptions of this process are largely lacking. Herein, we systematically lay out different scenarios for cation-coupled electron transfer processes that are at the heart of charge diffusion through MOFs. Through systematic variations of solvents and electrolyte cations, it is shown that the for charge migration through a PIZOF-type MOF, Zr(dcphOH-NDI) that is composed of redox-active naphthalenediimide (NDI) linkers, spans over 2 orders of magnitude. More importantly, however, the microscopic mechanisms for cation-coupled electron propagation are contingent on differing factors depending on the size of the cation and its propensity to engage in ion pairs with reduced linkers, either non-specifically or in defined structural arrangements. Based on computations and in agreement with experimental results, we show that ion pairing generally has an adverse effect on cation transport, thereby slowing down charge transport. In Zr(dcphOH-NDI), however, specific cation-linker interactions can open pathways for concerted cation-coupled electron transfer processes that can outcompete limitations from reduced cation flux.
通过离散氧化还原活性位点之间的跳跃机制实现的电子在金属-有机骨架中的传输与电荷平衡抗衡离子的扩散-迁移相耦合。因此,用于描述这种形式的电荷传输的实验确定的表观扩散系数 包含来自这两个过程的贡献。虽然这在 MOF 中已经得到很好的证实,但对于这个过程的微观描述在很大程度上还没有。在此,我们系统地阐述了阳离子耦合电子转移过程的不同情况,这些过程是 MOF 中电荷扩散的核心。通过系统地改变溶剂和电解质阳离子,可以证明由氧化还原活性萘二酰亚胺(NDI)链接器组成的 PIZOF 型 MOF(Zr(dcphOH-NDI))中,电荷通过的 跨越了 2 个数量级。然而,更重要的是,阳离子耦合电子传播的微观机制取决于不同的因素,具体取决于阳离子的大小及其与还原链接器形成离子对的倾向,无论是非特异性的还是在特定的结构排列中。基于计算结果并与实验结果一致,我们表明离子配对通常对阳离子传输有不利影响,从而减缓电荷传输。然而,在 Zr(dcphOH-NDI)中,特定的阳离子-配体相互作用可以为协同阳离子耦合电子转移过程开辟途径,这些过程可以克服还原阳离子通量的限制。