文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

骨质疏松性椎体压缩骨折强化术后不同椎体高度的生物力学效应:三维有限元分析

Biomechanical effects of different vertebral heights after augmentation of osteoporotic vertebral compression fracture: a three-dimensional finite element analysis.

作者信息

Zhao Wen-Tao, Qin Da-Ping, Zhang Xiao-Gang, Wang Zhi-Peng, Tong Zun

机构信息

Gansu University of Chinese Medicine, No. 35, Dingxi East Rd., Chengguan District, Lanzhou, 730000, Gansu Province, People's Republic of China.

Yunnan University of Traditional Chinese Medicine, No. 1076, Yuhua Rd., Chenggong District, Kunming, 650500, Yunnan Province, People's Republic of China.

出版信息

J Orthop Surg Res. 2018 Feb 8;13(1):32. doi: 10.1186/s13018-018-0733-1.


DOI:10.1186/s13018-018-0733-1
PMID:29422073
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5806350/
Abstract

BACKGROUND: Clinical results have shown that different vertebral heights have been restored post-augmentation of osteoporotic vertebral compression fractures (OVCFs) and the treatment results are consistent. However, no significant results regarding biomechanical effects post-augmentation have been found with different types of vertebral deformity or vertebral heights by biomechanical analysis. Therefore, the present study aimed to investigate the biomechanical effects between different vertebral heights of OVCFs before and after augmentation using three-dimensional finite element analysis. METHODS: Four patients with OVCFs of T12 underwent computed tomography (CT) of the T11-L1 levels. The CT images were reconstructed as simulated three-dimensional finite-element models of the T11-L1 levels (before and after the T12 vertebra was augmented with cement). Four different kinds of vertebral height models included Genant semi-quantitative grades 0, 1, 2, and 3, which simulated unilateral augmentation. These models were assumed to represent vertical compression and flexion, left flexion, and right flexion loads, and the von Mises stresses of the T12 vertebral body were assessed under different vertebral heights before and after bone cement augmentation. RESULTS: Data showed that the von Mises stresses significantly increased under four loads of OVCFs of the T12 vertebral body before the operation from grade 0 to grade 3 vertebral heights. The maximum stress of grade 3 vertebral height pre-augmentation was produced at approximately 200%, and at more than 200% for grade 0. The von Mises stresses were significantly different between different vertebral heights preoperatively. The von Mises stresses of the T12 vertebral body significantly decreased in four different loads and at different vertebral body heights (grades 0-3) after augmentation. There was no significant difference between the von Mises stresses of grade 0, 1, and 3 vertebral heights postoperatively. The von Mises stress significantly decreased between pre-augmentation and post-augmentation in T12 OVCF models of grade 0-3 vertebral heights. CONCLUSION: Vertebral augmentation can sufficiently reduce von Mises stresses at different heights of OVCFs of the vertebral body, although this technique does not completely restore vertebral height to the anatomical criteria.

摘要

背景:临床结果表明,骨质疏松性椎体压缩骨折(OVCFs)强化术后不同椎体高度得到了恢复,且治疗效果一致。然而,通过生物力学分析,尚未发现不同类型的椎体畸形或椎体高度在强化后的生物力学效应有显著差异。因此,本研究旨在使用三维有限元分析来研究OVCFs不同椎体高度在强化前后的生物力学效应。 方法:4例T12椎体骨质疏松性压缩骨折患者接受了T11-L1节段的计算机断层扫描(CT)。将CT图像重建为T11-L1节段(T12椎体用骨水泥强化前后)的模拟三维有限元模型。四种不同的椎体高度模型包括Genant半定量分级0、1、2和3级,模拟单侧强化。假设这些模型代表垂直压缩、屈曲、左侧屈曲和右侧屈曲载荷,并评估骨水泥强化前后不同椎体高度下T12椎体的von Mises应力。 结果:数据显示,术前T12椎体OVCFs在四种载荷下,从椎体高度分级0到分级3,von Mises应力显著增加。分级3椎体高度强化前的最大应力约为200%时产生,分级0时超过200%。术前不同椎体高度之间的von Mises应力有显著差异。强化后,T12椎体在四种不同载荷和不同椎体高度(分级0-3)下的von Mises应力显著降低。术后分级0、1和3椎体高度的von Mises应力之间无显著差异。分级0-3椎体高度的T12 OVCF模型在强化前和强化后的von Mises应力显著降低。 结论:椎体强化可以充分降低椎体OVCFs不同高度处的von Mises应力,尽管该技术不能将椎体高度完全恢复到解剖学标准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e827/5806350/0f12e554327d/13018_2018_733_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e827/5806350/dd287022e0cd/13018_2018_733_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e827/5806350/fca7b949661d/13018_2018_733_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e827/5806350/2972dda6bb8d/13018_2018_733_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e827/5806350/7c8015b39688/13018_2018_733_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e827/5806350/d656cf9bc78a/13018_2018_733_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e827/5806350/f8547fe33deb/13018_2018_733_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e827/5806350/486b81527b4d/13018_2018_733_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e827/5806350/327959146145/13018_2018_733_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e827/5806350/0f12e554327d/13018_2018_733_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e827/5806350/dd287022e0cd/13018_2018_733_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e827/5806350/fca7b949661d/13018_2018_733_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e827/5806350/2972dda6bb8d/13018_2018_733_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e827/5806350/7c8015b39688/13018_2018_733_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e827/5806350/d656cf9bc78a/13018_2018_733_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e827/5806350/f8547fe33deb/13018_2018_733_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e827/5806350/486b81527b4d/13018_2018_733_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e827/5806350/327959146145/13018_2018_733_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e827/5806350/0f12e554327d/13018_2018_733_Fig9_HTML.jpg

相似文献

[1]
Biomechanical effects of different vertebral heights after augmentation of osteoporotic vertebral compression fracture: a three-dimensional finite element analysis.

J Orthop Surg Res. 2018-2-8

[2]
Finite element analysis of wedge and biconcave deformity in four different height restoration after augmentation of osteoporotic vertebral compression fractures.

J Orthop Surg Res. 2021-2-15

[3]
Do we have to pursue complete reduction after PVA in osteoporotic vertebral compression fractures: a finite element analysis.

Injury. 2022-8

[4]
[Three-dimensional finite element model of thoracolumbar spine with osteoporotic vertebral compression fracture].

Zhonghua Yi Xue Za Zhi. 2010-11-9

[5]
[Biomechanical effect on adjacent vertebra after percutaneous kyphoplasty with cement leakage into disc: a finite element analysis of thoracolumbar osteoporotic vertebral compression fracture].

Zhonghua Yi Xue Za Zhi. 2011-1-4

[6]
Optimizing bone cement stiffness for vertebroplasty through biomechanical effects analysis based on patient-specific three-dimensional finite element modeling.

Med Biol Eng Comput. 2018-5-28

[7]
Biomechanical changes after the augmentation of experimental osteoporotic vertebral compression fractures in the cadaveric thoracic spine.

Spine J. 2005

[8]
Biomechanical effects of cement distribution in the fractured area on osteoporotic vertebral compression fractures: a three-dimensional finite element analysis.

J Surg Res. 2015-5-1

[9]
[Biomechanical effects of different bone cement diffusion patterns after vertebroplasty:finite element analysis].

Zhongguo Gu Shang. 2021-8-25

[10]
Biomechanical study between percutaneous vertebroplasty combined with cement pedicle plasty improves vertebral biomechanical stability: A finite element analysis.

BMC Musculoskelet Disord. 2024-7-29

引用本文的文献

[1]
Clinical efficacy and biomechanical analysis of a novel hollow pedicle screw combined with kyphoplasty for the treatment of Kümmell disease.

JOR Spine. 2024-12-6

[2]
Finite element analysis of precise puncture vertebral augmentation in the treatment of different types of osteoporotic vertebral compression fractures.

BMC Musculoskelet Disord. 2024-7-30

[3]
Biomechanical study between percutaneous vertebroplasty combined with cement pedicle plasty improves vertebral biomechanical stability: A finite element analysis.

BMC Musculoskelet Disord. 2024-7-29

[4]
Percutaneous Curved Vertebroplasty Decrease the Risk of Cemented Vertebra Refracture Compared with Bilateral Percutaneous Kyphoplasty in the Treatment of Osteoporotic Vertebral Compression Fractures.

Clin Interv Aging. 2024-2-17

[5]
Biomechanical study of different bone cement distribution on osteoporotic vertebral compression Fracture-A finite element analysis.

Heliyon. 2024-2-22

[6]
Clinical Outcomes and Safety Comparison of Vertebroplasty, Balloon Kyphoplasty, and Vertebral Implant for Treatment of Vertebral Compression Fractures.

AJNR Am J Neuroradiol. 2023-11

[7]
Biomechanical analysis of sandwich vertebrae in osteoporotic patients: finite element analysis.

Front Endocrinol (Lausanne). 2023

[8]
Biomechanical comparison between unilateral and bilateral percutaneous vertebroplasty for osteoporotic vertebral compression fractures: A finite element analysis.

Front Bioeng Biotechnol. 2022-9-8

[9]
Biomechanical evaluation of a novel anatomical plate for oblique lumbar interbody fusion compared with various fixations: a finite element analysis.

Ann Transl Med. 2022-8

[10]
Biomechanical effects of interbody cage height on adjacent segments in patients with lumbar degeneration: a 3D finite element study.

J Orthop Surg Res. 2022-6-21

本文引用的文献

[1]
Percutaneous vertebroplasty in Moroccan patients with vertebral compression fractures.

Pan Afr Med J. 2017-4-25

[2]
The effects of person-centered or other supportive interventions in older women with osteoporotic vertebral compression fractures-a systematic review of the literature.

Osteoporos Int. 2017-6-6

[3]
Pain, Quality of Life, and Safety Outcomes of Kyphoplasty for Vertebral Compression Fractures: Report of a Task Force of the American Society for Bone and Mineral Research.

J Bone Miner Res. 2017-6-26

[4]
FEM and Von Mises Analysis on Prosthetic Crowns Structural Elements: Evaluation of Different Applied Materials.

ScientificWorldJournal. 2017

[5]
Biomechanical in vitro comparison of radiofrequency kyphoplasty and balloon kyphoplasty.

Eur Spine J. 2017-12

[6]
Computational modeling of long-term effects of prophylactic vertebroplasty on bone adaptation.

Proc Inst Mech Eng H. 2017-5

[7]
Effect of an Outer Sleeve on an Inflatable Balloon Tamp in Terms of Height Restoration Under Simulated Physiological Load.

Clin Spine Surg. 2017-4

[8]
CIRSE Guidelines on Percutaneous Vertebral Augmentation.

Cardiovasc Intervent Radiol. 2017-3

[9]
Does Percutaneous Vertebroplasty or Balloon Kyphoplasty for Osteoporotic Vertebral Compression Fractures Increase the Incidence of New Vertebral Fractures? A Meta-Analysis.

Pain Physician. 2017

[10]
Comparison of unilateral and bilateral percutaneous vertebroplasty for osteoporotic vertebral compression fractures: a systematic review and meta-analysis.

J Orthop Surg Res. 2016-12-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索