Suppr超能文献

基于患者特定的三维有限元建模的生物力学效应分析,优化经皮椎体成形术中骨水泥的刚度。

Optimizing bone cement stiffness for vertebroplasty through biomechanical effects analysis based on patient-specific three-dimensional finite element modeling.

机构信息

Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China.

Department of Mechanical Engineering, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA.

出版信息

Med Biol Eng Comput. 2018 Nov;56(11):2137-2150. doi: 10.1007/s11517-018-1844-x. Epub 2018 May 28.

Abstract

Vertebroplasty is a common and effective treatment for symptomatic osteoporotic vertebral compression fractures. However, the cemented and adjacent vertebras have a risk of recollapse due to largely unassured mechanisms, among which excessive stiffness of bone cement may be an important risk factor. This study aimed to find the most appropriate range of bone cement stiffness by analyzing its biomechanical effects on the augmented and adjacent vertebras of individual patient after vertebroplasty. A three-dimensional finite element model of T11-L1 osteoligamentous vertebras was reconstructed according to individual computed tomography data and validated by post mortem human subject experiment in literatures. Bone cement of varying stiffness was injected into the trabecular core of the T12 vertebra simulatively. The maximum von Mises stresses on cancellous and cortical bones of T11-L1 vertebras were analyzed under the loading conditions of flexion, extension, bending, and torsion. For the adjacent T11 and L1 vertebras, the stepwise elevation of the bone cement elastic modulus increased the maximum von Mises stress on the cancellous bone, but its effect on cortical bone was negligible. For the augmented T12 vertebra, the stresses on cancellous bone increased slightly under the loading condition of lateral bending and remained no impact on cortical bone. The linear interpolation revealed that the most suitable range of cement elastic modulus is 833.1 and 1408.1 Mpa for this patient. Increased elastic modulus of bone cement may lead to a growing risk of recollapse for the cemented vertebra as well as the adjacent vertebras. Our study provides a fresh perspective in clinical optimization of individual therapy in vertebroplasty. Graphical abstract ᅟ.

摘要

椎体成形术是治疗症状性骨质疏松性椎体压缩性骨折的常用且有效的方法。然而,由于机制尚不完全明确,包括骨水泥的过高刚度,可能是一个重要的风险因素,因此,骨水泥固定的椎体及其相邻椎体有再塌陷的风险。本研究旨在通过分析骨水泥对个体患者椎体成形术后增强椎体及其相邻椎体的生物力学影响,寻找最合适的骨水泥刚度范围。根据个体 CT 数据,重建 T11-L1 骨-韧带椎体的三维有限元模型,并通过文献中的人体尸体实验进行验证。模拟性地向 T12 椎体的松质骨核心中注入不同刚度的骨水泥。在屈伸、弯曲和扭转加载条件下,分析 T11-L1 椎体松质骨和皮质骨的最大 von Mises 应力。对于相邻的 T11 和 L1 椎体,随着骨水泥弹性模量的逐步升高,松质骨的最大 von Mises 应力增加,但对皮质骨的影响可以忽略不计。对于增强的 T12 椎体,在侧屈加载条件下,松质骨的应力略有增加,对皮质骨没有影响。线性插值表明,对于该患者,骨水泥弹性模量的最佳范围为 833.1 和 1408.1 MPa。骨水泥弹性模量的增加可能会导致增强椎体及其相邻椎体的再塌陷风险增加。本研究为椎体成形术的个体化治疗提供了新的视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验