Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa; National Agricultural Research Organisation, P.O. Box 259, Entebbe, Uganda.
Vectors and Vector-Borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa.
Ticks Tick Borne Dis. 2018 Mar;9(3):580-588. doi: 10.1016/j.ttbdis.2018.01.012. Epub 2018 Feb 1.
There is little molecular data from Anaplasma marginale and Anaplasma centrale isolates from cattle in Uganda. Between November 2013 and January 2014, blood was collected from 240 cattle in 20 randomly-selected herds in two districts of the Karamoja Region in north-eastern Uganda. A duplex quantitative real-time polymerase chain reaction (qPCR) assay was used to detect and determine the prevalence of A. marginale (targeting the msp1β gene) and A. centrale (targeting the groEL gene). The qPCR assay revealed that most cattle (82.9%; 95% confidence interval [CI] 78.2-87.7%) were positive for A. marginale DNA, while fewer cattle (12.1%; 95% CI 7.9-16.2%) were positive for A. centrale DNA. A mixed effects logistic regression model showed that the age of cattle was significantly associated with A. centrale infection, while the prevalence of A. marginale varied significantly according to locality. The near full-length 16S ribosomal RNA (16S rRNA) gene and the heat shock protein gene, groEL, for both Anaplasma species were amplified from a selection of samples. The amplicons were cloned and the resulting recombinants sequenced. We found three novel A. marginale 16S rRNA variants, seven A. marginale groEL gene sequence variants and two A. centrale groEL gene sequence variants. Phylogenetic trees were inferred from sequence alignments of the 16S rRNA gene and GroEL amino acid sequences determined here and published sequences using maximum likelihood, Bayesian inference and parsimony methods Phylogenetic analyses classified the 16S rRNA gene and GroEL amino acid sequences into one clade for A. marginale and a separate clade for A. centrale. This study reveals a high prevalence and sequence variability of A. marginale and A. centrale, and is the first report on the phylogenetic characterisation of A. marginale and A. centrale from cattle in Uganda using molecular markers. Sequence variation can be attributed to mobile pastoralism, communal grazing and grazing with wildlife. These data support future epidemiological investigations for bovine anaplasmosis in Uganda.
在乌干达,从牛分离的边缘无浆体和中央无浆体的分子数据很少。2013 年 11 月至 2014 年 1 月期间,从乌干达东北部卡拉莫贾地区的两个区 20 个随机选择的畜群中采集了 240 头牛的血液。使用双定量实时聚合酶链反应 (qPCR) 检测和确定了边缘无浆体(靶向 msp1β 基因)和中央无浆体(靶向 groEL 基因)的流行率。qPCR 检测结果表明,大多数牛(82.9%;95%置信区间 [CI] 78.2-87.7%)边缘无浆体 DNA 呈阳性,而较少的牛(12.1%;95%CI 7.9-16.2%)中央无浆体 DNA 呈阳性。混合效应逻辑回归模型表明,牛的年龄与中央无浆体感染显著相关,而边缘无浆体的流行率根据地点而有显著差异。从选定的样本中扩增了这两种无浆体的近全长 16S 核糖体 RNA (16S rRNA) 基因和热休克蛋白基因 groEL。扩增子被克隆,产生的重组体被测序。我们发现了三种新的边缘无浆体 16S rRNA 变体、七种边缘无浆体 groEL 基因序列变体和两种中央无浆体 groEL 基因序列变体。基于 16S rRNA 基因和在这里和发表的序列确定的 GroEL 氨基酸序列的序列比对,使用最大似然法、贝叶斯推断法和简约法推断了系统发育树。系统发育分析将 16S rRNA 基因和 GroEL 氨基酸序列分类为边缘无浆体的一个分支和中央无浆体的一个分支。本研究揭示了边缘无浆体和中央无浆体的高流行率和序列变异性,并且是首次使用分子标记对乌干达牛的边缘无浆体和中央无浆体的系统发育特征进行的报道。序列变异可归因于流动的畜牧业、公共放牧和与野生动物一起放牧。这些数据支持未来在乌干达进行牛无浆体病的流行病学调查。