Department of Psychology, Princeton University, Princeton, 08544, NJ, USA.
Department of Psychology, Zhejiang Sci-Tech University, 310018, Hangzhou, Zhejiang, China.
Behav Res Methods. 2018 Dec;50(6):2388-2398. doi: 10.3758/s13428-018-1015-x.
Current eye movement data analysis methods rely on defining areas of interest (AOIs). Due to the fact that AOIs are created and modified manually, variances in their size, shape, and location are unavoidable. These variances affect not only the consistency of the AOI definitions, but also the validity of the eye movement analyses based on the AOIs. To reduce the variances in AOI creation and modification and achieve a procedure to process eye movement data with high precision and efficiency, we propose a template-based eye movement data analysis method. Using a linear transformation algorithm, this method registers the eye movement data from each individual stimulus to a template. Thus, users only need to create one set of AOIs for the template in order to analyze eye movement data, rather than creating a unique set of AOIs for all individual stimuli. This change greatly reduces the error caused by the variance from manually created AOIs and boosts the efficiency of the data analysis. Furthermore, this method can help researchers prepare eye movement data for some advanced analysis approaches, such as iMap. We have developed software (iTemplate) with a graphic user interface to make this analysis method available to researchers.
当前的眼动数据分析法依赖于定义感兴趣区域(AOI)。由于 AOI 是手动创建和修改的,因此它们的大小、形状和位置不可避免地存在差异。这些差异不仅影响 AOI 定义的一致性,而且还影响基于 AOI 的眼动分析的有效性。为了减少 AOI 创建和修改的差异,并实现高精度和高效率的眼动数据处理过程,我们提出了一种基于模板的眼动数据分析方法。该方法使用线性变换算法,将每个刺激的眼动数据注册到模板上。因此,用户只需为模板创建一组 AOI 即可分析眼动数据,而无需为所有单个刺激创建唯一的 AOI 集。这一改变大大减少了由手动创建 AOI 引起的误差,并提高了数据分析的效率。此外,该方法还可以帮助研究人员为一些高级分析方法(如 iMap)准备眼动数据。我们已经开发了具有图形用户界面的软件(iTemplate),以使这种分析方法能够为研究人员所使用。