Wang Xiao-Jing, Qu Yan-Rong, Zhao Yong-Liang, Chu Hai-Bin
College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot 010021, China.
Nanomaterials (Basel). 2018 Feb 9;8(2):98. doi: 10.3390/nano8020098.
Metal-enhanced luminescence of lanthanide complexes by noble metal nanoparticles has attracted much attention because of its high efficiency in improving the luminescent properties of lanthanide ions. Herein, nine kinds of europium and terbium complexes-RE(TPTZ)(ampca)₃·3H₂O, RE(TPTZ)(BA)₃·3H₂O, RE(phen)(ampca)₃·3H₂O, RE(phen)(PTA)·3H₂O (RE = Eu, Tb) and Eu(phen)(BA)₃·3H₂O (TPTZ = 2,4,6-tri(2-pyridyl)-s-triazine, ampca = 3-aminopyrazine-2-carboxylic acid, BA = benzoic acid, phen = 1,10-phenanthroline, PTA = phthalic acid)-have been synthesized. Meanwhile, seven kinds of core-shell Ag@SiO₂ nanoparticles of two different core sizes (80-100 nm and 40-60 nm) and varied shell thicknesses (5, 12, 20, 30 and 40 nm) have been prepared. The combination of these nine types of lanthanide complexes and seven kinds of Ag@SiO₂ nanoparticles provides an opportunity for a thorough investigation of the metal-enhanced luminescence effect. Luminescence spectra analysis showed that the luminescence enhancement factor not only depends on the size of the Ag@SiO₂ nanoparticles, but also strongly relates to the composition of the lanthanide complexes. Terbium complexes typically possess higher enhancement factors than their corresponding europium complexes with the same ligands, which may result from better spectral overlap between the emission bands of Tb complexes and surface plasmon resonance (SPR) absorption bands of Ag@SiO₂. For the complexes with the same lanthanide ion but varied ligands, the complexes with high enhancement factors are typically those with excitation wavelengths located nearby the SPR absorption bands of Ag@SiO₂ nanoparticles. These findings suggest a combinatorial chemistry strategy is necessary to obtain an optimal metal-enhanced luminescence effect for lanthanide complexes.
贵金属纳米颗粒对镧系配合物的金属增强发光因其在改善镧系离子发光性能方面的高效性而备受关注。在此,合成了九种铕和铽配合物——RE(TPTZ)(ampca)₃·3H₂O、RE(TPTZ)(BA)₃·3H₂O、RE(phen)(ampca)₃·3H₂O、RE(phen)(PTA)·3H₂O(RE = Eu、Tb)以及Eu(phen)(BA)₃·3H₂O(TPTZ = 2,4,6-三(2-吡啶基)-均三嗪,ampca = 3-氨基吡嗪-2-羧酸,BA = 苯甲酸,phen = 1,10-菲啰啉,PTA = 邻苯二甲酸)。同时,制备了七种具有两种不同核尺寸(80 - 100 nm和40 - 60 nm)以及不同壳层厚度(5、12、20、30和40 nm)的核壳结构Ag@SiO₂纳米颗粒。这九种镧系配合物与七种Ag@SiO₂纳米颗粒的组合为深入研究金属增强发光效应提供了契机。发光光谱分析表明,发光增强因子不仅取决于Ag@SiO₂纳米颗粒的尺寸,还与镧系配合物的组成密切相关。铽配合物通常比具有相同配体的相应铕配合物具有更高的增强因子,这可能是由于Tb配合物的发射带与Ag@SiO₂的表面等离子体共振(SPR)吸收带之间具有更好的光谱重叠。对于具有相同镧系离子但配体不同的配合物,具有高增强因子的配合物通常是那些激发波长位于Ag@SiO₂纳米颗粒SPR吸收带附近的配合物。这些发现表明,采用组合化学策略对于获得镧系配合物的最佳金属增强发光效应是必要的。